Performance Estimation for Two-Dimensional Brownian Rotary Ratchet Systems
Hiroki Tutu and  Takehiko Horita and  Katsuya Ouchi
Journal of the Physical Society of Japan Vol. 84, 044004 (2015) [15 pages]

Robust unidirectional rotation in three-tooth Brownian rotary ratchet systems
Hiroki Tutu and Soichiro Nagata
Phys. Rev. E 87, 022144 (2013) [15 pages] 

Design of two-tooth unidirectional rotary-ratchet molecular machines driven by linearly polarized ac fields
Hiroki Tutu and Yuta Hoshino
Phys. Rev. E 84, 061119 (2011) [11 pages]

Frequency adaptation in controlled stochastic resonance utilizing
delayed feedback method: Two-pole approximation for response function
Hiroki Tutu
Phys. Rev. E 83, 061106 (2011) [15 pages]

Controlled Stochastic Resonance in a Bistable Magnetic System
Hiroki Tutu
Progress of Theoretical Physics 
Vol. 123 No. 1 (2010) pp. 1-33.

Stochastic Landau-Lifshitz-Gilbert Equation
with Delayed Feedback Field
Hiroki Tutu and Takehiko Horita
Progress of Theoretical Physics 
Vol. 120 No. 2 (2008) pp. 315-345

Instabilities in a One-Dimensional Driven Bistable System under 
Delayed Feedback Control
Hiroki Tutu and Tatsuo Mitani
Progress of Theoretical Physics
Vol. 117 No. 6 (2007) pp. 993-1028

Time-Delayed Feedback Method to Control Magnetic Orientation Dynamics
in a Driven Anisotropic Nanoparticle System
Hiroki Tutu,
Progress of Theoretical Physics Vol. 116  No. 6 (2006) pp.1005-1028

Controlling Symmetry Breaking in Periodically Driven Bistable System:
Preliminary Consideration 
H. Tutu and T. Mitani, 
Prog. Theor. Phys. Suppl. No. 161 (2006), 376-380.

Magnetic Domain Wall Dynamics Associated with the Dynamic Phase Transition
Naoya Fujiwara, Hiroki Tutu and Hirokazu Fujisaka
Progress of Theoretical Physics Supplement No.161 (2006) pp. 181-184

Time-Delayed Feedback Control Method for
Dynamical Symmetry Breaking 
in a Periodically Driven Bistable System
Hiroki Tutu
Progress of Theoretical Physics Vol. 114  No. 5 (2005) 953-981

Magnetic walls in the anisotropic XY-spin system in an
oscillating magnetic field
Naoya Fujiwara, Hiroki Tutu, and Hirokazu Fujisaka
Physical Review E 70 066132(13 pages) (2004) 

Landau Theory of Dynamic Phase Transitions and Systematic
Perturbation Expansion Method  for Getting Phase Diagrams
Hiroki Tutu and Naoya Fujiwara
Journal of the Physical Society of Japan Vol.73 No.10 2680-2696 (2004)

Ordering dynamics of one-dimensional Bloch wall system and domain
size distribution function
Hiroki Tutu
Physical Review E 67, 036112(19 pages) (2003)

Mound-Interface Kinetics in Dictyostelium Aggregation
H.Tutu
Journal of the Physical Society of Japan Vol.71 p.2310-2315 (2002)

Dynamic phase transitions in anisotropic XY spin system
 with an oscillating magnetic field
T. Yasui, H. Tutu, M. Yamamoto and H. Fujisaka
Physical Review E 66, 036123(18 pages) (2002)
[Erratum: Phys. Rev. E 67, 019901(E) (2003) (1 page)]

Dynamic phase transition in a time-dependent Ginzburg-Landau model
in an oscillation field
H. Fujisaka, H. Tutu and P.A. Rikvold, 
Physical Review E 63, 036109(11 pages), (2001)
[Erratum: Phys. Rev. E 63, 059903(E) (2001) (1 page)]

Interface dynamics 
in a uniaxial anisotropic n-vector model
H.Tutu, 
Physical Review E 57, 2675-2680 (1998)

Domain size distribution function for the 1D Bloch wall dynamics
proceeding of the 2nd Tohwa University International Meeting,
ed. M. Tokuyama and I. Oppenheim, p153 (1 page), World Scientific (1998)

Ordering process and Bloch-wall dynamics
in 2-dimensional anisotropic spin system
H.Tutu,  
Physical Review E 56, 5036-5043 (1997)

Ordering process and Bloch-wall dynamics
in a nearly one-dimensional anisotropic spin system
H.Tutu and H.Fujisaka,
Physical Review B 50 (1994) 9274-9280.

Proceedings
Stochastic Landau-Lifshitz-Gilbert equation
with delayed feedback field:
Efficiency for maintaining a UPO,
Hiroki TUTU,
NATO Science for Peace and Security Series - B: Physics and Biophysics,
Complex Phenomena in Nanoscale Systems, Edited by G. Casati and
D. Matrasulov, p.245-251, Springer (2009).

解説(日本語)

非平衡スピン系の非線形ダイナミクス
藤坂博一, 筒広樹, 日本応用磁気学会誌 25 (2001) p.1471-1477