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The connectivity of complex networks and functional implications has been attracting much interest in many
physical, biological and social systems. However, the significance of the weight distributions of network links
remains largely unknown except for uniformly- or Gaussian-weighted links. Here, we show analytically and
numerically, that recurrent neural networks can robustly generate internal noise optimal for spike
transmission between neurons with the help of a long-tailed distribution in the weights of recurrent
connections. The structure of spontaneous activity in such networks involves weak-dense connections that
redistribute excitatory activity over the network as noise sources to optimally enhance the responses of
individual neurons to input at sparse-strong connections, thus opening multiple signal transmission
pathways. Electrophysiological experiments confirm the importance of a highly broad connectivity spectrum
supported by the model. Our results identify a simple network mechanism for internal noise generation by
highly inhomogeneous connection strengths supporting both stability and optimal communication.

T
he dynamics of a complex network depend crucially on the particular connection architecture of the
network1–5. In the absence of sensory stimulation, cortical networks are far from silent, but generate rich
and ubiquitous forms of electrical activity that represent noisy internal brain states. Such states typically

display low-frequency (,10 Hz, typically 1–2 Hz) irregular neuronal firing6–9, interact bidirectionally with
sensory experience10–15, and, moreover, involve a rich repertoire of complex sequential activity patterns16,17.
There has been much recent interest in the genesis18–24 and function10–13 of spontaneous activity or noise in
the brain, since noise may be the basic mechanism underlying our percept and decision process, which are
essentially probabilistic14,15. While the role of network connectivity in complex neural dynamics has been studied
extensively4,25–28, weighted networks have been investigated only recently29–32 and the dynamical and functional
implications of the distribution of link weights remain largely unknown in excitable systems.

Recent experiments revealed that the amplitude of excitatory synaptic potentials (EPSPs) between cortical
pyramidal neurons obeys a long-tailed, typically lognormal, distribution33,34. Such a distribution creates a synaptic
spectrum spanning from vast numbers of weak synapses (typically, the amplitude of EPSP , 1 mV) to a small
fraction of extremely strong synapses, for which EPSP amplitude can be several millivolts. Here, we numerically
and analytically study the significance of these strong-spare and weak-dense (SSWD) connections for the
dynamics of recurrent networks, in which the weights of recurrent excitatory synaptic inputs to each neuron
obey a long-tailed distribution. We asked whether reverberating synaptic input generated by such a distribution is
sufficient for the genesis of stable spontaneous activity, and whether this internal noise provides an optimal
solution for efficient information processing.

Results
The dynamics of each neuron are described by a leaky integrate-and-fire model:

dv
dt

~{
1

tm
v{VLð Þ{gE v{VEð Þ{gI v{VLð Þ, ð1Þ

where v is the membrane potential. The membrane time constant tm is 20 [ms] for excitatory neurons and 10 [ms]
for inhibitory neurons, and the reversal potentials of leak, excitatory and inhibitory postsynaptic currents are
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VL5270 [mV], VE50 [mV], VI5280 [mV], respectively. The excit-
atory and inhibitory synaptic conductances gE and gI [ms21] normal-
ized by the membrane capacitance obey

dgX

dt
~{

gX

ts
z
X

j

GX,j

X
sj

d t{sj{dj

� �
, X~E,I ð2Þ

where d(t) is the delta function, Gj, dj, sj are the weight, delay and
spike timing of synaptic input from the j-th neuron, respectively.
The decay constant ts is 2 [ms] and synaptic delays are chosen
randomly between d021 to d011 [ms], where d0 5 2 for excit-
atory-to-excitatory connections and d0 5 1 for other connection
types. The values are determined from the stability of spontaneous

activity (Methods). Spike threshold is Vthr5 250 [mV] and v is reset
to Vr 5 260 mV after spiking. The refractory period is 1 [ms].

The values of Gi for excitatory-to-excitatory connections are dis-
tributed such that the amplitude of EPSPs x measured from the
resting potential obey a lognormal distribution

p xð Þ~
exp { log x{mð Þ2

�
2s2

� �
ffiffiffiffiffi
2p
p

sx
ð3Þ

on each neuron (Fig. 1a), where the values s51.0 and m-s2 5 log(0.2)
well replicate the experimentally observed long-tailed distributions
of EPSP amplitudes33,34. We declined any unrealistic value of Gi that
gives an amplitude larger than 20 [mV] by drawing a new value
from the distribution. The resultant amplitude of strongest EPSP
was about 10 [mV] on each neuron. For simplicity, excitatory-
to-inhibitory, inhibitory-to-excitatory and inhibitory-to-inhibitory
synapses have uniform values of Gi50.018, 0.002 and 0.0025,
respectively. Excitatory-to-excitatory synaptic transmissions fail at
an EPSP amplitude-dependent rate of pE 5 a/(a1EPSP), where
a50.1 [mV]34.

We first demonstrate numerically that the long-tailed distribution
of EPSP amplitudes achieves aperiodic stochastic resonance for spike
sequence on a single neuron receiving random synaptic inputs
(Fig. 1b). Stochastic resonance refers to a phenomenon wherein a
specific level of noise enhances the response of a nonlinear system to
a weak periodic or aperiodic stimulus35–37, and has been observed in
many physical and biological systems38–45. We vary the average mem-
brane potential of the neuron by changing the rate of presynaptic
spikes at a portion of the weakest excitatory synapses (EPSP ampli-
tudes , 3 mV). Interestingly, the cross-correlation coefficients
(C.C.) between output spikes and inputs to the strongest synapses
are maximized at a subthreshold membrane potential value about 10
[mV] above the resting potential and 10 [mV] below firing threshold
(Fig. 1c). At more hyperpolarized levels of the average membrane
potential, even an extremely strong EPSP (,10 mV) cannot evoke a
postsynaptic spike, and the fidelity of spike transmission is reduced.
On the contrary at more depolarized average membrane potentials,
the neuron can fire without strong inputs, also degrading the fidelity.

We can express the C.C.s in terms of the conditional probability of
spiking by strong-sparse input, which we can analytically obtain
from the stochastic differential equations for weak-dense synapses
(Methods). The analytic results well explain the optimal neuronal
response obtained numerically (Fig. 1c). The phenomena can be
regarded as stochastic resonance for aperiodic spike inputs36,37. We
find that the stochastic enhancement of spike transmission is much
weaker in a neuron (Fig. 1c, dashed curve) having Gaussian-distrib-
uted EPSP amplitude, which give the same mean and variance of
synaptic conductances as the lognormal distribution but no tails of
strong synapses (Supplementary Methods). The results prove the
advantage of long-tailed distributions of EPSP amplitude.

We confirmed the above model’s prediction by performing
dynamic clamp recordings from cortical neurons (n514). To mimic
synaptic bombardment with long-tailed distributed EPSP ampli-
tudes, we injected the synaptic current given in equation (2) by using
the same values of excitatory and inhibitory conductances as used in
Fig. 1c (Supplementary Methods). The rate of random synaptic
inputs was varied in a low-frequency regime. The physiological result
also demonstrated the maximization of the fidelity of synaptic trans-
mission (Fig. 1d, e).

Now, we ask whether the above stochastic resonance is achievable
by the noise generated internally by SSWD recurrent neural net-
works. To see this, we conduct numerical simulations of equations
(1) and (2) for a network model of 10000 excitatory and 2000
inhibitory neurons that are randomly connected with coupling
probabilities of excitatory and inhibitory connections being 0.1 and
0.5, respectively. Since the network has a trivial stable state in which
all neurons are in the resting potentials, we briefly apply external
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Figure 1 | Maximizing the fidelity of spike transmission with long-tailed
sparse connectivity. (a) Each excitatory neuron has a lognormal amplitude

distribution of EPSPs. The resultant mean and variance of the model are

0.89 [mV] and 1.12 [mV2], respectively, whereas those shown in a previous

experiment [1] were 0.77 [mV] and 0.92 [mV2]. Inset is a normal plot of the

same distribution. (b) Schematic illustration of the neuron model with

strong-sparse and weak-dense synaptic inputs. Colors (red, green and blue)

indicate inputs to the top three strongest weights. (c) C.C.s between the

output spike train and input spike trains at the 1st (red), 2nd (green) and

3rd (blue) strongest synapses on a neuron are plotted against the mean

membrane potential and the corresponding input firing rate at each synapse.

The dashed line and shaded area show the mean and SD of the membrane

potential distribution of excitatory neurons shown in Fig. 2f for the SSWD

network. Vertical bars represent SEM over different realizations of random

input. The dashed line indicates an analytical curve for the strongest synapse

of the long-tailed distribution, while the dot-dashed line is the C.C.s for the

strongest synapse when EPSP amplitudes obey Gaussian distribution. (d)

Similar C.C.s obtained by dynamic clamp recordings from a cortical neuron.

The color code and vertical bars are the same as in C. (e) The trial-averaged

C.C.s for the strongest synapses on n514 neurons.
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Poisson spike trains to all neurons during initial 100 [ms] to trigger a
spontaneous firing. In the absence of external input, the model sus-
tains a stable asynchronous firing initiated by a brief external stimu-
lus (Fig. 2a). The spontaneous network activity emerges purely from
reverberating synaptic input, is stable in a very low-frequency regime
(Fig. 2b) and is highly irregular (Fig. 2c) as experimentally
observed6,8,9. Firing rate distributions are well fitted by lognormal
distributions7,46,47. Each neuron exhibits large membrane potential
fluctuations, on top of which spikes are generated occasionally
(Fig. 2d), owing to the dynamic balance between excitatory and
inhibitory activities (Fig. 2a and 2e)18,20,24,48. All these properties are
consistent with the spontaneous activity observed in cortical neu-
rons20. Importantly, the average values of the membrane potentials

are around –60 mV in excitatory neurons (Fig. 2f)20,49, at which spike
transmission at strong-sparse synapses becomes most reliable
(Fig. 1a, shaded area). Inputs to weak-dense synapses maintain the
average membrane potential of each neuron (Fig. 2g), whereas inputs
to strong-sparse synapses govern sparse spiking. Therefore, weak-
dense and strong-sparse synapses have different roles in stochastic
neural dynamics, although they distribute continuously.

Long-tailed distributions of coupling strengths offer a much wider
region of the parameter space to stable spontaneous activity than
Gaussian-distributed coupling strengths (Supplementary Fig. 1).
Furthermore, a linear stability analysis reveals the homeostasis of
the ongoing state of the SSWD network (Methods).

What is the underlying mechanism and functional implications
of the spontaneous noise generation? Strong-sparse synapses form
multiple synaptic pathways in the recurrent neural network
(Fig. 3a). Owing to the stochastic resonance effect at these
synapses, spike sequences are routed reliably along these pathways
(Fig. 3b: Supplementary Methods) that may branch and converge
(Fig. 3c). Since strong synapses are rare, spike propagation along a
pathway is essentially unidirectional, as indicated by the cross-
correlograms for presynaptic and postsynaptic neuron pairs
(Fig. 3d). If, therefore, external stimuli elicit spikes from the initial
neurons of some strong pathways, the spikes can stably travel
along these pathways without much interference (Fig. 3e). The
number of spikes received at the end of a pathway is proportional
to that of spikes evoked at the start, although fluctuations in the
spike number increase with the distance of travel (Fig. 3f). These
results imply that spikes can carry rate information along the
multiple synaptic pathways embedded by strong-sparse synapses.
The presence of precise spike sequences has been reported in the
brain of behaving animals50–52. We note that the same spikes are
sensed as noise if they are input to weak synapses.

Discussion
In this study, we have explored a coordinating principle in neural
circuit function based on a long-tailed distribution of connection
weights in a model neural network. The network properties con-
ferred by the long-tailed EPSP distribution account for a role of noise
in information routing and present a novel hypothesis for neural
network information processing. Namely, we have demonstrated
that a single neuron shows spike-based aperiodic stochastic res-
onance; the cross-correlation coefficient between output spikes of a
single neuron and inputs to the strongest synapses are maximized
when the neuron receives a certain amount of background noise.
Stochastic resonance has been studied in neuronal systems in various
contexts. The presence of sensory noise improved behavioral per-
formance in humans38,41 and other animals39. Synaptic bombard-
ment enhanced the responsiveness of neurons to periodic sub-
threshold stimuli20,40,42. Asynchronous neurotransmitter release can
give a noise source for stochastic resonance in local circuits of model
neurons with short-term synaptic plasticity43,44. A surprising result
here is that the networks may internally generate optimal noise with-
out external noise sources for the spike-based stochastic resonance
on sparse-strong connections. Weak-dense connections redistribute
excitatory activity routed reliably on strong connections over the
network as optimal noise sources to sustain spontaneous firing of
recurrent networks.

Internal noise or asynchronous irregular firing may provide the
neural substrate for probabilistic computations by the brain, and how
such activity emerges in cortical circuits has been a fundamental
problem in cortical neurobiology. Such neuronal firing has been
replicated by sparsely connected networks of binary or spiking
neurons18,19,21–23, and the importance of excitation-inhibition balance
has been repeatedly emphasized. However, the mechanism to
generate extremely low-rate spontaneous asynchronous firing
(=10 Hz) remained unclear, and our model gives a possible solution
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Figure 2 | Spontaneous noise in the SSWD recurrent network. The

network receives neither external input nor background noise, and hence

activity is spontaneous. (a) Upper, Spike raster of excitatory (red) and

inhibitory (blue) neurons in the noisy spontaneous firing state. Lower, The

population firing rates of excitatory (red) and inhibitory (blue) neurons.

(b) Firing rate distributions of excitatory (red) and inhibitory (blue)

neurons can be fitted by lognormal distributions (black lines). Mean firing

rates are 1.6 and 14 [Hz] for excitatory and inhibitory neurons respectively.

(c) CVs of inter-spike intervals are distributed around unity in excitatory

(red) and inhibitory (blue) neurons. (d) Time courses of the membrane

potentials of excitatory (red) and inhibitory (blue) neurons exhibit large

amplitude fluctuations. (e) Scatter plot of the instantaneous population

activities of excitatory and inhibitory neurons. The solid line represents

linear regression. (f) Distribution functions of the fluctuating membrane

potentials show the depolarized states of excitatory (red) and inhibitory

(blue) neurons. (g) The mean (solid) and standard deviation (dashed) of

the membrane potential fluctuations of an excitatory neuron when all

EPSPs smaller than the minimum value given in the abscissa are

eliminated. Here, we remove a portion of excitatory synapses on a neuron

from the weakest ones.
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to this. A large-scale model of mammalian thalamocortical systems
consisting of a million neurons with realistic electrophysiological and
morphological properties generated asynchronous irregular states23,
implying that interactions between dynamical and anatomical pro-
cesses significantly contribute to internal noise generation. By con-
trast, such states appears in our model from a special synaptic
connectivity within local cortical circuits. It is worth while noting
that the asynchronous irregular firing of our model does not rely on
slow synapses like NMDA receptor-mediated ones. Though slow
synapses may improve the stability of such states, our model suggests
that such a role of slow synapses is subsidiary.

Long-tailed amplitude distributions of EPSPs can arise from activ-
ity-dependent synaptic plasticity. In networks of rate neurons with
linear response functions, a Hebbian learning rule induces a lognor-
mal weight distribution when the rule of weight increment depends
nonlinearly on the weights53. In networks of spiking neurons, spike-
timing dependent plasticity results in a long-tailed conductance dis-
tribution if the weight dependence for long-term depression54 depends
sublinearly on synaptic weights55. Activity-dependent plasticity may
switch and reroute different pathways of strong synapses due to

sensory or motor experiences of animals while total distribution of
EPSP amplitude of the network are kept intact. It is intriguing whether
the activity-dependent pathway rerouting may provide a mechanism
to represent Bayesian priors of sensory experiences in spontaneous
cortical activity15 and habitual motor coordination56.

In summary, we conjoin two fundamental principles in signal pro-
cessing and complex phenomena observed in cortical neural networks:
stochastic resonance and noisy internal brain states. The key of this
link is the coexistence of a spectrum of strong-sparse and weak-dense
connections that gives a mechanism by which excitable networks
generate and maintain optimal noise level for efficient spike commun-
ication. These results have implications for a role of noise in networks
with a broad spectrum of coupling strengths, such as the gating of
specific signal pathways with the probabilities of pathway selection
modulated by the dynamics of internal noise generation.

Methods
Cross-correlation coefficient. We can analytically calculate cross-correlation coefficients
by assuming that spike trains are well approximated by a low-rate Poisson process. Then,
the cross-correlation coefficient between input and output spike sequences is estimated as
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Figure 3 | Spike information routing in the SSWD recurrent network model. (a) A schematic illustration of the SSWD recurrent network.

Thick lines stand for strong-sparse connections and thinner lines for weak-dense connections. In reality, the strength of connections is

continuous obeying a long-tailed distribution. (b) Examples of spike sequences routed in the network are shown by different colors. Insets

magnify the raster plot. (c) Examples of branching (left) and converging (right) pathways formed by the strong synapses. Numbers refer to

neurons, and colors to the corresponding pathways in (b). (d) Cross-correlograms are averaged over strongly connected neuron pairs (EPSP

.8mV). (e) Repeated external stimuli (arrows) evoke simultaneous spike propagations in two pathways. (f) Linear relationship between the

number of input spikes and that of output ones in a pathway. The dashed line and vertical bars represent linear regression and SD over trials,

respectively.
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where rin and rout are firing rate of input and output sequences respectively, T is a short
period of time satisfying rinT=1 and routT=1, and Pr xout xinjð Þ is the conditional
probability of output spike for given input spike at strong synapses. In numerical
simulation, we evaluated Pr xout xinjð Þ by detecting a post-synaptic spike within the epoch
of EPSP rise from the arrival of an input spike.

Analytical solution of the cross-correlation coefficient. We can analytically
calculate the firing rate and cross-correlation coefficient of each neuron by dividing
excitatory synaptic inputs to the neuron into two parts, one consisting of weak and
modestly strong synapses and one consisting of extremely strong synapses. In this
approximation, we may treat inputs to the former excitatory synapses and inhibitory
synapses by the diffusion approximation57, in which Poisson spike inputs on (2) are
replaced with a white Gaussian noise having the same mean and variance of the
Poisson inputs. We then used the effective-time-constant approximation58 to replace
v2VE and v2VI with V02VE and V02VI to obtain linear stochastic differential
equations

dv
dt

~{
v{V0ð Þ

te
zg

dg

dt
~{

g

ts
zsj

8>><
>>: ð5Þ

where V05(VL/tm1VEgE01VIgI0)te and te51/(1/tm1gE01gI0) are the equilibrium
membrane potential and the effective membrane time constant, respectively. The
mean excitatory conductance of the first group and mean inhibitory conductance are
gE0~ts

P
i[lst group

Gi 1{pið Þri and gI05tsMIGIrI, respectively, in terms of the firing rate

of the i-th excitatory synaptic input ri, the synaptic transmission failure pi, firing rate
at inhibitory synapses rI and the number of inhibitory synapses on the neuron MI. The
fluctuation of the total synaptic current g is given as
s2~ V0{VEð Þ2

P
i[1st group

G2
i 1{pið Þriz V0{VIð Þ2MI G2

I RI . The stationary

probability density of the membrane potential and the output rate are obtained from
equation (5) as59
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up to the first order of
ffiffiffiffiffiffiffiffiffiffiffi
ts=tm

p
, where erf(x) is the error function and
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j 1=2ð Þj j and j is the Riemann zeta function.
Normalization constant C is calculated from the

Ð vthr

{? P vð Þdv~1{tref rout,v .
The contribution of extremely strong excitatory synapses to output firing is

approximated as the sum of the conditional firing probabilities over inputs to these
synapses. In the effective-time-constant approximation, the effective amplitude of
EPSP evoked by i-th synapse is

Ee,i vð Þ~ VE{vð Þtte= te{tsð Þ
s t

{ts= te{tsð Þ
e

VE{VLð Þttm= tm{tsð Þ
s t

{ts= tm{tsð Þ
m

Ei:
VE{vð Þ

VE{VLð Þ bEi ð8Þ

where v is the membrane potential just before the arrival of presynaptic input and Ei is
the EPSP amplitude measured from the resting potential. Because the conditional pro-
bability of having an output spike given the i-th input is equal to the area of the stationary
density function satisfying vzEe,i vð Þ§vthr, the conditional probability is equal to

Pi~

ðVthr

VE {VLð ÞVthr {bEi VE
VE {VLð Þ{bEi

P vð Þdv: ð9Þ

Then, by summing these contributions, we obtain the firing rate of the neuron as

rout~rout,wz
X

i[2nd group

Piri:rout,wzrout,s: ð10Þ

Finally, by substituting Pi of the strongest synapse into P xout xinjð Þ and using equation
(10), we obtain an analytical expression of the correlation coefficient given in equation
(4). To derive the analytical curve shown in Fig. 1c, we classified the five strongest
synapses into the second group and the remaining ones into the first group.

Stability of sparse spontaneous activity. Using the above analytic results, we can
derive a coupled evolution equation for the average firing rates of excitatory and
inhibitory neuron pools. Since neurons are connected in a non-biased manner, we can
use the mean-field approximation.

The firing rates of excitatory and inhibitory neuron pools, rE and rI can vary in time
due to interactions between them. Since the mean output rate is equal to the mean rate
of input given synaptic delays in a recurrent network, we may represent the time
evolution of the mean firing rates of these neuron pools as the following relaxation
process with their effective membrane time constants:

drE

dt
~{

1
te,E

rE tð Þ{rout,E rE t{dEEð Þ,rI t{dEIð Þð Þð Þ

drI

dt
~{

1
te,I

rI tð Þ{rout,I rI t{dIEð Þ,rI t{dIIð Þð Þð Þ

8>><
>>: , ð11Þ

where rout,E(rE,rI)5rout,s1rout,w and rout,I(rE,rI) is similar to rout,w if we replace the
average excitatory-to-inhibitory and inhibitory-to-inhibitory synaptic conductances
with their unique values in equation (7). Constants dXY represent the mean synaptic
delays from Y neurons to X neurons (X, Y 5 E or I). We can obtain the nullclines of rE

and rI shown in Supplementary Fig. 2 by equating the left-hand sides of equation (11)
to zero. Sustained spontaneous activity may correspond to a nonzero intersection
(rE0, rI0) of the two nullclines. The stability of spontaneous activity can be studied by
the linear stability analysis: we substitute rE(t)5rE01eelt and rI(t)5rI01ecel in
equation (11) and expand the equation up to the linear order in e. Then, the elim-
ination of e and c from the resultant equation gives a closed-form equation for the
stability index l:60

lte,Ez1{aEEe{ltEE
� �

lte,Iz1{aIIe
{ltII

� �
~aIEe{ltIE aEIe

{ltEI : ð12Þ

We solve Equation (12) numerically to obtain the stable region in the parameter space
(Supplementary Fig. 2). The results of the theoretical analysis well coincide with those
of numerical simulations.
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