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We consider the effect of weak additive noise to a general class of limit cycle oscillators.
Employing phase reduction method, the largest Lyapunov exponent of the noise driven os-
cillators are shown to be negative for a broad class of oscillators, which implies that identical
limit cycle oscillators driven by a common additive noise can achieve phase synchroniza-
tion without direct mutual interactions. Generalization of the results including the effect of
colored noise and the effect of noise to spatially extended systems are also discussed.

§1. Introduction

Phase synchronization is one of the most interesting phenomena of populations
of nonlinear self-sustained oscillators.1) Phases of the oscillators can precisely co-
incide with each other owing to mutual interactions or external periodic forcing.
Fluctuating inputs, whereas they disturb periodic oscillations, can also lead phase
synchrony to self-sustained oscillators.2)–5) When two or more identical oscillators
are driven by a common fluctuating input, their phases can synchronize. Evidence
of the noise induced phase synchronization is accumulating in a variety of fields.6),7)

The synchronization is characterized by the negative largest Lyapunov exponent of
the driven systems. In this study, using phase reduction method1) which is applicable
to an arbitrary limit cycle oscillators, we prove that the largest Lyapunov exponent
of oscillators driven by weak noise are always negative for a broad class of oscilla-
tors.3) We also apply the universal result to spatially extended dynamical systems
exhibiting spatio-temporal instabilities.

§2. Noise induced phase synchronization

Population of N identical nonlinear oscillators driven by common additive noise
are described as

Ẋi = F (Xi) + ξ(t) , (2.1)

where i = 1, · · · , N and ξ(t) is a vector of Gaussian white noise. The elements of
the vector are normalized as 〈ξl(t)〉 = 0 and 〈ξl(t)ξm(s)〉 = 2Dlmδ(t − s), where
D = (Dlm) is a covariance matrix of the noise components. Regarding the common
noise as a weak perturbation to the deterministic oscillators, the phase reduction
method gives the following Stratonovich stochastic differential equation of the phases:

φ̇i = ω + Z(φi) · ξ , (2.2)
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where ω is an intrinsic frequency of the unperturbed oscillators. Z is the phase-
dependent sensitivity defined as Z(φ) = gradXφ|X=X0(φ), where X0(φ) is the un-
perturbed limit cycle solution. Because all the oscillators are identical and do not
interact with one another, we can study the phase synchronization of the entire pop-
ulation by analyzing linear stability of single oscillator of them. Linearization of the
oscillator for a small deviation ψ gives

ψ̇ = (Z ′(φ) · ξ)ψ . (2.3)

Since the largest Lyapunov exponent λ is defined as the long time average of the
exponential growth rate of ψ, we can represent λ as

λ = lim
T→∞

1
T

∫ T

0
Z ′(φ(t)) · ξ(t)dt

= 〈Z ′(φ(t)) · ξ(t)〉ξ
=

∫ 2π

0
Pst(φ)[(Z ′T DZ)′ − (Z ′T DZ ′)]dφ . (2.4)

Here we replaced the long time average with the ensemble average with respect to
ξ. Pst is a steady distribution function of φ. Under assumption of weak noise, Pst is
reduced to a constant function, and we finally obtain the following formula:

λ = − 1
2π

∫ 2π

0
Z ′T DZ ′dφ < 0 . (2.5)

This implies that weak noise always induce synchronization to limit cycle oscillators.

§3. Colored Gaussian noise

We have assumed in the above analysis that the driving noise ξ is a white
Gaussian noise. Here we treat the case where weak driving noise has finite tem-
poral correlation. To simplify, we assume there is only single noise source, it is
straightforward to generalize the result to multiple noise sources. Phase reduc-
tion method is also valid even if ξ has temporal correlation. Since noise strength
is small, we can approximate distributions of the phase as P (φ) ∼= 1/(2π) and
P (φ(t′)|φ(t)) ∼= δ(φ(t′) − φ(t) + ω(t − t′)). Employing these approximations, we
obtain the expression of the largest Lyapunov exponent as

λ =
1
2π

∫ ∞

0
dsC(s)

∫ 2π

0
dφZ ′′(φ)Z(φ− ωs) . (3.1)

We can prove the exponent is always negative by rewritten Eq. (3.1) using Fourier
mode of Z and ξ:

λ = −
∞∑

n=−∞
n2|Zn|2 〈|ξnω|2〉

2
< 0 , (3.2)

where Z(φ) =
∑∞

n=−∞ Zne
inφ and ξ(t) = 1

2π

∫ ∞
−∞ ξke

iktdk. To confirm the result, we
measured the Lyapunov exponent of a specific case by numerical simulation [Fig. 2].
Measured exponents well agree with the analytical result.
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Fig. 1. Lyapunov exponents as a function of correlation time. Here Z · ‰ = sin(φ)ξ and

〈ξ(t + s)ξ(t)〉 = D
τ

e−
s
τ . The solid line shows an analytical result.

§4. Noise induced suppression of phase turbulence

Our analytical approach based on phase reduction method is also applicable to
reaction-diffusion systems which may show spatio-temporal chaos. Here, we show
that spatially uniform noise applying to reaction-diffusion systems generally can
suppress phase turbulence.

Reaction-diffusion system with common additive noise are described as

∂X

∂t
(x, t) = F (X(x, t)) + ∇2X + ξ(t) . (4.1)

When F (X) has a limit cycle solution, uniform noisy oscillating state ∂X0
∂t = F (X0)+

ξ(t) is a solution of Eq. (4.1). Using phase reduction, linear stability eigenvalues of
the uniform state are obtained as a function of perturbation wave number k:

λ(k) = −αk2 − γk4 − 1
2π

∫ 2π

0
DZ ′2dφ . (4.2)

In absent of additive noise, uniform oscillation is unstable and the system exhibits
phase turbulence, if α < 0. However, since last term of the right hand side is negative,
there exists a critical strength of noise

Dc =
α2

4γZ̄ ′2 , (4.3)

above which λ(k) < 0 for any k and the uniform state recover linear stability. To
demonstrate the result, we calculated Ginzburg-Landau equation driven by common
additive noise numerically and found that spatio-temporal turbulence is actually
suppressed by additive noise when the noise strength is sufficiently large.
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Fig. 2. Spatio-temporal profiles of complex Ginzburg-Landau equation with common additive noise,

Ȧ = (1 + ic0)A + (1 + ic1)∇2A − (a + ic2)|A|2A + ξ(t), at c0 = −1, c1 = 1 and c2 = −1.5.

(a) D = 0.0, (b) D = 0.008 and (c) D = 0.013. Critical noise strength evaluated from Eq. (4.3)

is Dc = 0.0118.

In conclusion, we have found that limit cycle oscillators always synchronize in
phase when they are driven by common weak additive noise. Analytical expression
of the largest Lyapunov exponent of the driven oscillator has been derived, which has
shown to be negative regardless of the detailed oscillatory dynamics and temporal
correlation of the noise. We also found weak noise applying to spatially extended
systems can suppress phase turbulence generally when the noise strength is above a
critical strength.
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