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We show that a wide class of uncoupled limit-cycle oscillators can be in-phase synchronized by
common weak additive noise. An expression of the Lyapunov exponent is analytically derived to study
the stability of the noise-driven synchronizing state. The result shows that such a synchronization can
be achieved in a broad class of oscillators with little constraint on their intrinsic property. On the other
hand, the leaky integrate-and-fire neuron oscillators do not belong to this class, generating intermittent
phase slips according to a power law distribution of their intervals.
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Populations of nonlinear oscillators can be found in a
variety of phenomena, including laser array [1], semi-
conductors [2], chemical reactions [3], society of living
organisms [4], and neurons [5]. In many of these systems,
the phases of oscillations can precisely coincide owing to
mutual interactions among oscillators. Alternatively, a
strong periodic input may synchronize independent os-
cillators through the entrainment to the common input. In
either cases, external or internal noise sources may dis-
turb the phase synchronization, and therefore have long
been considered to exert a negative influence on the
precise temporal relationship between oscillators.

This view, however, has been challenged recently.
Pikovsky studied [6,7], in his pioneering work, a popu-
lation of circle maps stimulated by impulse inputs at
discrete random times and found that the common noise
can induce stable phase synchronization. Since the noise-
driven synchronization does not depend on the intrinsic
frequency of oscillators, it differs from the entrainment to
an external periodic input. Evidence is accumulating for
the common-noise-induced synchronization in several
biological and physical systems. For instance, an en-
semble of independent neuronal oscillators may be syn-
chronized by a fluctuating input applied commonly to all
of them. This is suggested by experimental studies of
neural information coding [8], in which the reproduci-
bility of spike firing was tested for a repeated applica-
tion of the same fluctuating or constant input current.
Interestingly, the reproducibility of the output spike trains
was much higher for the fluctuating input than for the
constant one [8–10], indicating a high temporal precision
of the spike responses to noisy input. In ecological sys-
tems, common environmental fluctuations such as cli-
mate changes may synchronize different populations
separated by a large geographical distance [11]. In fluid
dynamics, a common turbulent flow may generate a syn-
chronized motion of floating particles [12].
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All of these findings indicate an active role of noise in
synchronization of noninteracting dynamical elements. It
remains, however, unclear whether the noise-induced
phase synchronization is specific to a limited class of
oscillators or can be generalized to a broad class of
oscillators. In this study of a general class of limit-cycle
oscillators, we show that common additive noise, even if
it is weak, can induce phase synchronization regardless
of their intrinsic properties and the initial conditions.
Using the phase reduction method which is applicable
to an arbitrary oscillator [3], we analytically calculate the
Lyapunov exponent of the synchronizing state and prove
that the exponent is nonpositive as long as the phase-
dependent sensitivity is differentiable up to the second
order. In addition, we investigate the scaling laws that
appear in the dynamics of the relative phase when the
perfect phase synchronization is deteriorated by a dis-
continuous phase-dependent sensitivity or oscillator-
specific noise sources.

Population of N identical nonlinear oscillators driven
by common additive noise are described as

_X i � F�Xi� � ��t�; (1)

where i � 1; . . . ; N and ��t� is a vector of Gaussian white
noise. The elements of the vector are normalized as
h�l�t�i � 0 and h�l�t��m�s�i � 2Dlm
�t� s�, where D �
�Dlm� is a variance matrix of the noise components.
Because all the oscillators are identical and do not interact
with one another, we can study the phase synchronization
of the entire population in a reduced system of two
oscillators. Regarding the common noise as a weak per-
turbation to the deterministic oscillators, the phase re-
duction method gives the following dynamical equations
of the phases:

_�i � !� Z��i� � �; (2)

where ! is an intrinsic frequency of the unperturbed
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oscillators. Z is the phase-dependent sensitivity defined as
Z��� � gradX�jX�X0���, where X0��� is the unperturbed
limit-cycle solution determined by F�X�. We assume that
Z is differentiable at least to the second order, although Z
can be discontinuous for such oscillators that have dis-
continuous periodic solutions (e.g., integrate-and-fire
neurons). As we will see later, the discontinuity of Z
can significantly affect the noise-driven synchronization.
To ensure the validity of the phase reduction, the weak
noise must satisfy the condition jDlmj 
 1.

Equation (2) implies that the synchronizing solution
described as �1�t� � �2�t� is absorbing; i.e., once two
oscillators synchronize, they always remain synchro-
nizing. Since the area of the phase space is limited
(0 � �1; �2 < 2�), the phase variables starting from
arbitrary initial phases can reach a neighborhood of the
synchronizing solution with a finite probability in a finite
time. To prove that the synchronizing solution is stable
against perturbations, we analytically calculate the
Lyapunov exponent � of the solution. We note that the
stochastic Eq. (2) should be interpreted as a Stratonovich
differential equation, since the phase reduction method
assumes the conventional variable translations in differ-
ential equations. To evaluate the correlation between �
and �, we translate Eq. (2) into an equivalent Ito differ-
ential equation [13]:

_�i � !� Z0��i�
TDZ��i� � Z��i� � �; (3)

where the dash denotes differentiation with respect to �.
In the Ito equation, unlike in Stratonovich formulation,
the correlation between � and � vanishes. The disap-
peared correlation is exactly compensated by the new
extra drift term Z0TDZ in Eq. (3). Note that this trans-
lation is formal and mathematically equivalent requiring
no approximation. Suppose that the two phases have an
infinitesimally small difference  � �2 ��1. Then,
linearization of Eq. (3) with respect to  gives

_ � �Z0���TDZ����0 � Z0��� � �� ; (4)

where� obeys Eq. (3). By introducing a new variable y �
log� �, Eq. (4) is further rewritten as

_y � �Z0TDZ�0 � �Z0TDZ0� � Z0 � �: (5)

Since the Lyapunov exponent is defined as limT!1y�T� �
y�0��=T, the long time average of the right-hand side of
Eq. (5) coincides with �. Replacing the long time average
with the ensemble average with respect to �, we can
represent � as

� � h�Z0TDZ�0 � �Z0TDZ0� � Z0 � �i�

� h�Z0TDZ�0 � �Z0TDZ0�i�

�
Z 2�

0
Pst����Z

0TDZ�0 � �Z0TDZ0��d�: (6)

Here, the second line follows from hZ0��� � �i� � 0,
which holds in Ito stochastic processes. Pst is a steady
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distribution function of � described as Pst��� �
C

jZ���j2
�R��2�

� expV�x� � V����dx with an effective potential

V��� � �
R
� !�Z0�x�TDZ�x�

Z�x�TDZ�x� dx and a normalization con-
stant C. Fortunately, under the assumption of weak noise,
jDlmj 
 1, Pst is reduced to a constant function Pst��� �
1=�2��. By substituting this into the last line of Eq. (6),
and noting that the first term vanishes due to the period-
icity of Z, we finally obtain the following formula:

� � �
1

2�

Z 2�

0
Z0TDZ0d� � 0; (7)

where the equality holds if Z is a constant function. Since
the variance matrix is positive definite, � is nonpositive.
This implies that the phase synchronization induced by
common noise is stable in an arbitrary oscillator system
regardless of the detailed oscillatory dynamics, as long as
Z is differentiable.

To confirm the above analytical results, we numerically
solve Eq. (2) to obtain the Lyapunov exponent for a
specific case, i.e., Z��� � � � sin����. This specific case
is, for instance, given by Stuart-Landau oscillator de-
scribed below with c0 � 1, c2 � 0, and �T � ���; 0�.
The phase difference between the two oscillators driven
by common additive noise shows an exponential decay,
and the decay constant well agrees with the analytical
result [Fig. 1(a)]. Consistent with Eq. (7), the magnitude
of the negative Lyapunov exponent increases in pro-
portion to the noise intensity D [Fig. 1(b)]. In order to
confirm the validity of the phase reduction method, we
employ the Stuart-Landau oscillators and compare the
Lyapunov exponent derived from Eq. (7) with that cal-
culated numerically in the original oscillator system
[Fig. 1(c)]. For the Stuart-Landau oscillator described
with a complex variable A as _A � �1� ic0�A�
�1� ic2�jAj

2A, the phase sensitivity can be explicitly
given as Z���T � ��c2 cos!�� sin!�;�c2 sin!��
cos!��=!, where ! � c0 � c2 [3].

In practical situations, the individual oscillators may be
influenced by additional oscillator-specific noise sources.
To discuss the influences of additional noise, Eq. (1) is
modified to

_X i � F�Xi� � ��t� � �i�t�; (8)

where the uncommon noise sources �i are normalized
as h�i;l�t�i � 0 and h�i;l�t��j;m�s�i � 2dlm
ij
�t� s�.
Linearization of Eq. (8) gives the stochastic equation of
the phase difference as

_ �

�
�Z0T�D� d�Z�0 � Z0 �

�
��

�1 � �2

2

��
 

�Z � ��2 � �1�: (9)

Since both multiplicative and additive factors fluctuate,
Eq. (9) is regarded as a multiplicative stochastic process
with additive noise, which has been studied in a variety of
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FIG. 2. The intermittent phase slips induced by uncommon
additive noise sources to the oscillators defined by ! � 1,
Z � � � sin����, and Z � � � sin����. The noise intensities
are D � 0:1 and d � 0:001. (a) The distribution of the phase
difference over a sufficiently long time. (b) The time evolution
of the phase difference exhibits intermittent phase slips.
(c) The distribution of the inter-phase-slip intervals shows a
power law decay with an exponent of �3=2 (fitted by a solid
line) and an exponential cutoff resulted from the additive noise
term in Eq. (9).
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FIG. 1. The common-noise-induced phase synchronization.
(a) The phase difference between two oscillators shows an
exponential decay fluctuating around the theoretical behavior
(solid line) derived from Eq. (7). Different curves correspond
to different realizations of the random driving force ��t�. Here,
Z � � � sin����, ! � 1, and D � 0:1. (b) The Lyapunov ex-
ponent of the above synchronizing solution is shown as a
function of the common-noise intensity (circles). The solid
line shows an analytical result. (c) The Lyapunov exponent is
calculated for the synchronizing solution of the Stuart-Landau
oscillator. Numerical results are shown for both original (solid
circles) and reduced (open squares) oscillator systems. The
solid line represents a theoretical result. The parameter values
are set as c0 � 2, c2 � 1, D11 � D22 � D, and D12 � D21 � 0.
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fields [14]. The steady distribution function of Eq. (9)
exhibits a power law decay in a middle range of  
[Fig. 2(a)]. Simulations of Eq. (8) reveal that the system
is trapped in the phase synchronizing state for certain
intervals between intermittent phase slips [Fig. 2(b)]. It is
known that the intermittent bursts are characteristic to
the stochastic processes driven simultaneously by multi-
plicative and additive noise sources [15], and that the
intervals between neighboring bursts obey a power law
distribution with an exponent of �3=2. In Fig. 2(c), the
interslip intervals of the present phase dynamics obey a
power law distribution of the same exponent.

So far, we have assumed that the phase-dependent
sensitivity Z is a continuous function of the phase.
However, some oscillators do not have this property. For
example, an integrate-and-fire neuron oscillator, which is
described by _v � I � v with a renewal condition v�t� �
1 ! lim !0�v�t�  � � 0, is frequently used for model-
ing neuronal activity, but it has the following discontinu-
ous Z:

Z��� �
!
I
exp

�
�
!

�
; 0 � �< 2�; (10)

where ! � 2�=logI � log�I � 1�� [16]. As shown in
Fig. 3(a), numerical integrations of Eq. (2) for the Z given
in Eq. (10) show positive Lyapunov exponents, with the
magnitudes increased with the intensity of the common
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noise. The phase difference does not decay exponentially
but fluctuates around the synchronizing state between the
intermittent phase slips [Fig. 3(b)]. Figure 3(c) displays
the synchronized time evolution of the phase variables
that is terminated by an abrupt phase slip at t � 170:
After that, the two phases are desynchronized until
they recover the phase synchronization (not shown). As
in the previous case, the interslip intervals obey a �3=2
power law distribution [Fig. 3(d)]. This intermittency is
essentially the same as the on-off intermittency of chaotic
oscillators just before the onset of synchronization, thus
associated with positive Lyapunov exponents [17]. Note
that the discontinuity of the phase sensitivity and the
resultant positive Lyapunov exponents are inherent in
the leaky integrate-and-fire model. For example, the
Hodgkin-Huxley model has a continuous and differen-
tiable phase sensitivity, thus yielding a negative Lyapunov
exponent and a stable phase synchronization in response
to common noise (results not shown).

We briefly argue the relationships between the present
study and two previous studies. In the stochastic reso-
nance, the ability of an excitable system in detecting a
weak signal can be optimized by noise of suitable inten-
sity [18]. The present study also argues the role of noise in
improving the response reliability. However, here the
improvement is achieved by the precise temporal coinci-
dences between oscillators, whereas the stochastic reso-
nance enhances only the response probability without
caring the exact timing of events. Thus, the stability or
Lyapunov exponent is not a central issue in the stochastic
resonance, and the two studies deal with qualitatively
different phenomena. Second, some chaotic oscillators
204103-3
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FIG. 3. The unstable phase synchronization of integrate-and-
fire models stimulated by a common-noise source. The phase-
dependent sensitivity of this oscillator is discontinuous, and the
noise-driven synchronization is not ensured. I � 2 and no un-
common noise, d � 0. (a) The Lyapunov exponent � is plotted
as a function of the common-noise strength D. (b) The phase
difference shows significant jitters, diffusing due to intermit-
tent phase slips. Here and below, D � 0:1. (c) The time evolu-
tion of the two phases displays temporarily synchronizing
(t < 170) and desynchronizing (t > 170) states. (d) The distri-
bution of the inter-phase-slip intervals shows an exponential
decay with an exponent of �3=2 (fitted by a solid line).
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exhibited phase synchronization when they were driven
by common additive noise [7,19]. However, it remained
unknown whether this type of synchronization may ap-
pear in a broad class of, either chaotic or nonchaotic,
oscillator systems. In this Letter, we have proven that
such a synchronization can be induced in a wide class
of limit-cycle oscillators. A unified treatment of limit-
cycle oscillators and chaotic oscillators is awaited, as they
may share many characteristic properties of the common-
noise-induced synchronization.

In conclusion, independent limit-cycle oscillators can
be synchronized by weak, common additive noise regard-
less of the detailed oscillatory dynamics and the initial
phase distributions. The stability of this synchronizing
solution requires only the presence of a second derivative
of the phase-dependent sensitivity, so the solution can
exist in a broad class of oscillators. The leaky integrate-
and-fire oscillators do not belong to this class of oscilla-
tors and show no perfect synchronization.
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