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Sequence retrieval has a fundamental importance in information processing by the brain, and has extensively
been studied in neural network models. Most of the previous sequential associative memory embedded se-
quences of memory patterns have nearly equal sizes. It was recently shown that local cortical networks display
many diverse yet repeatable precise temporal sequences of neuronal activities, termed “neuronal avalanches.”
Interestingly, these avalanches displayed size and lifetime distributions that obey power laws. Inspired by these
experimental findings, here we consider an associative memory model of binary neurons that stores sequences
of memory patterns with highly variable sizes. Our analysis includes the case where the statistics of these size
variations obey the above-mentioned power laws. We study the retrieval dynamics of such memory systems by
analytically deriving the equations that govern the time evolution of macroscopic order parameters. We calcu-
late the critical sequence length beyond which the network cannot retrieve memory sequences correctly. As an
application of the analysis, we show how the present variability in sequential memory patterns degrades the

power-law lifetime distribution of retrieved neural activities.

DOLI: 10.1103/PhysRevE.75.011910

I. INTRODUCTION

Many models have been proposed for learning and gener-
ating sequences of neural activities. A well-studied class of
such models includes associative memory models with
asymmetric recurrent synaptic connections [1-4]. The
mechanism studied in these models appears to play an active
role for storing temporal sequences of visual memories in the
inferotemporal cortex [5]. Another well-studied model of se-
quence generation is “synfire chain” that represents a feed-
forward neural network to propagate synchronous spike
packets [6,7]. This class of neural networks was originally
proposed to explain precise spike sequences in monkey
brains, and was recently revisited by other experimental
studies [8,9]. From the viewpoint of circuit structure, the
discrimination between the two model classes is not rigorous
when recurrent connections are sparse in associative memory
models.

Here, we consider an associative memory model of binary
neurons that stores sequences of memory patterns with
highly variable sizes. The motivation of this study comes
from the recent experimental finding of ‘“neuronal ava-
lanches,” which revealed that cortical networks have the
ability to produce a diverse repertoire of sequences of syn-
chronous activities. Interestingly, the size and time length
(i.e., lifetime) of these activities are distributed obeying
power laws of exponents —1.5 and -2, respectively [10,11].
These results suggest that neuronal avalanches may reflect a
critical branching process in neural dynamics, since the pro-
cess shows the same power laws as avalanches [12,13]. Al-
ternatively, neural avalanches may reflect the existence of a
diverse ensemble of cell assemblies rather than the critical
state in neural dynamics. To obtain the observed power laws,
the size and length of each subnetwork of these cell assem-
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blies should obey the same power-law distributions as the
size and lifetime of neuronal avalanches. We have proposed
a stochastic neuronal wiring rule to embed such an ensemble
of layered subnetworks in a large pool of excitatory and in-
hibitory neurons [14].

In this paper, we analyze a binary network analogy of this
spiking-neuron network model to study the properties of se-
quence retrieval numerically and analytically. Recurrent or
feed-forward neural networks for sequence memory recall
have been studied extensively [15,16]. For instance, we may
define the storage capacity as the upper bound for the total
length of sequences beyond which the system cannot retrieve
memory patterns [17-20]. Besides the storage capacity, we
are particularly interested in how the nonuniform construc-
tion of memory sequences might affect the retrieval dynam-
ics in this model. In fact, the evolution equations of the mac-
roscopic order parameters become stochastic rather than
deterministic due to the variability in memory patterns. In-
terestingly, the stochastic nature of the macroscopic dynam-
ics induces an exponential cutoff in the power-law size dis-
tribution of retrieved sequences, with the cutoff position
depending on the memory load. Namely, the variable
memory sizes destabilize sequence retrieval. Throughout the
paper, we use “length” and “lifetime” to refer to the physical
length of each embedded sequence and the length of the
actually retrieved one, respectively.

II. ASSOCIATIVE MEMORY FOR SEQUENCE RECALL
WITH HIGHLY VARIABLE PATTERN SIZES

Population of N identical neurons updated at every dis-
crete time step are described as,

N
St+ D) =Flh(0]=F| 2 J;80) |, i=1....N (1)
j=1

where S; and h; are the state variable and internal potential of
the ith neuron, respectively. We update all neurons synchro-
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nously to mimic synchronous propagations of neural activi-
ties such as neuronal avalanches. For simplicity, we restrict
response function F to a Heaviside function F(x)=0(x—6)
with threshold @: ®(x)=1 if x>0, or 0 otherwise. We, how-
ever, can easily extend the results of our analysis to the case
with a general class of nonlinear response functions. Matrix
element J;; represents coupling strength from neuron j to
neuron i. Memory pattern {EI’-‘} defines a set of neurons be-
longing to the uth layer or cell assembly of a memorized

sequence: &'=1 if the layer includes neuron i, or &'=0 oth-
erwise. In many previous models of associative memory, the

value of El“ was determined according to the following rule:

- 0, with Prob1-a
i= . ; 2)
1, with Prob a

where a is the average size of each memory pattern normal-
ized by the system size N. By contrast, in this study we treat
sequences of such memory patterns that possess variable
sizes. Thus, we modify the above rule such that successive
memory patterns may have different sizes,

~ {0, with Prob 1 —a
w ©

"~ |1, with Prob a,,

A3)

We later determine {a,} according to a stochastic process.
Below, we primarily investigate the retrieval process of
the network storing a single sequence of length P, although
we can easily extend our analysis to memory retrieval with
extensively many sequences of finite length. The sequence
length is defined as the number of memory patterns stored in
the neural network in proportion to the size of the network,
P=aN. To avoid possible finite size effects, we impose a
periodic boundary condition on the memory sequence as

{g={g". 4)

In terms of these memory patterns, we construct the follow-
ing synaptic coupling matrix:

— §M+1 _

-3 — (1_ 5@ -0 -
yn

+1
E o (1_ Ne (5)

where §IH(EEI’.‘—aﬂ) satisfies (£)=0 and ((gf‘)z)=a#(l—aﬂ).

III. ORDER-PARAMETER EQUATIONS DESCRIBING
RETRIEVAL PROCESS

When the system size N is sufficiently large, we can de-
scribe the retrieval dynamics in terms of evolutional equa-
tions for macroscopic order parameters. We can derive such
equations analytically in the limit of N— , keeping {a,}
constant. The derivation goes in parallel with the previous
analyses [19,20] that were conducted based on a version of
the self-consistent signal-to-noise analysis (SCSNA) [21] ex-
tended to the nonequilibrium case. This method can rather
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accurately describe the retrieval dynamics in the Hopfield-
type associative memory models [19]. Moreover, the order-
parameter equations obtained at the equilibrium coincide
with those obtained by replica calculations [21]. We intro-
duce a pattern overlap to measure the similarity between the
population neural activity and the uth memorized pattern in
the sequence,

m,, (1) = mE &S8,(1), (6)

which is normalized such that the value takes unity when the
population activity retrieves the uth pattern correctly. We
measure the strength of the population activity by

Y=~ 350, ™)

which takes a value of unity when all neurons are activated
simultaneously.

We can assume, without loss of generality, that only the
tth memory pattern has a sizable overlap at time step ¢, i.e.,
m,,_(t)~ O(1). Overlaps with the other memory patterns are
significantly small at this time step, that is, m,. ()
~O(1/N), since the pattern vectors are mutually indepen-
dent. Thus, we may divide &,(r) into a signal term having a
magnitude of O(1) and the residual terms as follows:

aN aN

h) =2 &% m (1) = € m (1) + 2 & m, (1) = € 'm,(1)
Iz L
+7Z,(1). (8)

We can treat the crosstalk term Z;(7) as independent random
variables obeying a Gaussian distribution whose mean and
variance are 0 and oz(t), respectively. To derive the evolution
equation for o*(t), we have to consider
2
1) > ©)

ol<r+1>=<z$<r+1>>=<( S g
WZ SMF<2 & 'm (t> (n#t

uF+1
where
+1) (10)

m,(t+1)=

are overlaps with the nonretrieved patterns. Note that S; is
correlated with 5’”&’” since §; depends on it through a recur-
rent synaptic mput Therefore we separate the term involv-
ing §’”&’+1 from the remaining terms and expand F up to the
first order of this term as

F(f;‘mﬂ_1<r> £ g;my_l(r))

vE L

= F( > f;mm)) ¥ g;‘mﬂ-%z)F'( p) f,»”my_l(t)>

vE R vF#E U
=S¥+ &m0 (0, (w#r+D) (D

where thus introduced S;“)(t) and S;.")’(t) do not explicitly
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depend on §}‘-‘. Substituting Eq. (11) for F(Evgj'-’”m,,(t)) in the
right-hand side of Eq. (10) gives

m(t+ 1) = — (1_ Egy S (r+1)
WE (&2 ¢+ Dm,y (1)
=mW(t+ 1)+ U*Om, (1), (w#1+1)
(12)

where UX(1), the coefficient of m,_(z), does not explicitly
depend on &. Since u—n#t+1-n for an arbitrary integer n,
we can repeatedly apply the above calculation to Eq. (12)
and obtain the following equation for Z:

Zt+1)= > & mW(r+ 1) + UHOm“ ()

puFH+1

+ UAOU* = Dm*» (i -1)
+ U U (= DUP (1= 2)m# (it =2) + --+).
(13)
We have to average the square of Z; over different real-
izations of memory sequence to calculate the variance given
in Eq. (9). As (&*)=0, the products of different memory pat-
terns do not contribute to this averaging, and we need to

evaluate only the self-squared terms appearing in the square
of Eq. (13). The first term, for example, gives

< S (1 + 1)>2>

uF+1

— pA+1N2 (e 20 o) 2 1 )2
<M§u(§, 2(EH (St + 1)) ( Nei—a)
u+14\2
<§1 "y _aﬂ)>y<r+ 1
= {Naz Prob(a, = a)Prob(a,,,; = bla,,
a,b
b(1->b
:a)]ﬁ}y(t+ 1) = (ca)y(t+1), (14)
where
c=, Prob(a,, = a)Prob(a,,; = bla, = b(l b)
a,b (1 )
_ L ag+1(1 _ag+1)
" aN o aul-ay) (13)

arises from the nonuniformity of the size of memory pat-
terns. As shown in Eq. (13), the effect of the factor ¢ is to
rescale the memory storage load as «— ca. We can calculate
the other terms in a similar fashion to obtain a recursive
relationship,
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A+ =acly(t+1)

+UX(0)y(t) + U*()UP(t = D)y(t= 1)+ «++)

= ac(y(t+ 1)+ Uz(t){iol(t)})
=(ac)y(t+ 1)+ U(0)d*(¢). (16)

Consequently, the macroscopic equations are summarized as

m(t+1)=

1
—— f De(E FLE m(t) + oD oo,

a1 -

A (t+1) = (ac)y(t+ 1) + U)o (1),

y(l + 1) = J Dz<F[§’+1m(t) + U(I)Z]>§t+l,

Ut) = J Dz(F'[&€'m(r) + a(t)z]) g, (17)

| — . . ..
where Dz=5=¢"* 2dz. In particular, when F is a Heaviside
function, we can further rewrite the above equations as

m(t + ]) =1- %[erfc(@lﬂ) + erfc(¢?+l)]’

1
yie+1)=a,, - E[aml erfc(qﬁtlﬂ) -(1- at+1)erfc(¢?+l)],

a(t+1)=(ac)y(t+1) + %T{am exp[— (¢f1+l)2]

+ (1= )exp[- (¢5,)°1)7, (18)
in terms of normalized variables,

(1 =au)m() -0

1
D1 =

\EO'(I)
o Aym(t)+ 0
t+1 \50’(1‘)
where erfc(x)= 1—= sexp(-u?)du is the complementary er-

ror function.

When the successive memory patterns have an equal size,
a,=a, the equations coincide with the conventional evolu-
tion equations of the order parameters. The equations accu-
rately predicted the memory retrieval dynamics and the stor-
age capacity in many models. To confirm the validity of our
analyses, we numerically solved the evolution equations with
constant a,, for various initial overlaps. The numerical solu-
tions agreed well with the trajectories of the pattern overlap
that were obtained by simulations of the original network
model (Fig. 1).

IV. REDUCTION OF STORAGE CAPACITY DUE TO
STRUCTURAL NONUNIFORMITY

The nonuniformity of the pattern size gives rise to two
different effects on the order parameter equations: the scaling

011910-3



JUN-NOSUKE TERAMAE AND TOMOKI FUKAI

PHYSICAL REVIEW E 75, 011910 (2007)

0 10 20 0
(b) time

10 20 0 10 20
time

time

FIG. 1. Time evolution of the pattern overlap during memory retrieval. A network model embeds an infinitely long sequence of memory
patterns with a constant memory size, a=0.1. The pattern overlap was obtained from (a) numerical simulations of a 4000-neuron network or
(b) numerical solutions to the order-parameter equations. The memory load, or equivalently the sequence length, was set as a=0.6 (left), 0.7

(middle), and 0.8 (right).

factor ¢ and the temporal fluctuation due to a, explicitly in-
cluded in the equations. Since the value of the scaling factor
is generally greater than unity,

o= 12 a£5+1(1 _a&+1) = H ag+1(1 _a&+1) =1, (20)
P a,(l-a,) “ a,l-a,)

where the equality holds when all a,’s have the same value.
This implies that the present neural network behaves as if an
effective number of memory patterns were larger than the
actual one. Therefore, the variations in the memory pattern
size reduce the storage capacity.

This situation degrades the effect of sparse coding on im-
proving the storage capacity. When all a,’s have an equal
value, the storage capacity is known to be a monotonically
decreasing function of the sparseness of network activity
[20,22,23]. Therefore, we can improve the storage capacity
by decreasing that value. If, however, a,’s have different
values and only some of them are decreased, the value of c is
increased and the effect of the increased nonuniformity may
overwhelm the benefit of small a,. Thus, the storage capac-
ity is determined through the tradeoff between the two com-
peting effects. To see this more clearly, we consider a simple
example in which a,’s take only two values, b, and
b,(<b,) according to the following probabilistic rule:

{bl, with Prob 1-p
a,=

. (21)
b,, with Prob p

The average of a,’s over all memorized patterns is a decreas-
ing function of p since b, <b,. The storage capacity, there-
fore, would increase monotonically with an increase in p, if
we neglect the scaling factor that is a nonmonotonic function
of p (Fig. 2, dashed line). The solid curves in Fig. 2 display
the values of the storage capacity which were calculated
from the order-parameter Eqs. (18) and (19) with {a,} given

by Eq. (21). The storage capacity increases monotonically if
we neglect the scaling factor ¢ (gray). It is, however, not
monotonous if we consider this factor (black). As we in-
crease p, the storage capacity initially decreases and takes a
minimum at a finite value of p.

V. STOCHASTIC FLUCTUATIONS IN ORDER-
PARAMETER DYNAMICS

When the sizes of successive memory patterns are deter-
mined as random variables, the order-parameter equations

1.2

—_
(=]
S

capacity, ¢

0.0 0.2 0.4 0.6 0.8 1.0
p

FIG. 2. Storage capacity of a network model embedding a se-
quence of memory patterns. Their normalized sizes {a,} were cho-
sen from a binomial distribution at b;=0.1 (with Prob 1-p) and
b>=0.04 (with Prob p). The capacity was calculated by numerically
solving the order-parameter equations. The scaling factor can be
calculated as c=(B,—B,)’p(1-p)/(B,B,)+1, where B;=b;(1-b;)
and B,=b,(1-b,), and changes nonmonotonically with p (dashed
curve). If the scaling factor is neglected in the expressions, the
storage capacity increases monotonically with increasing p (gray
curve). The scaling factor, however, turns the storage capacity into
a nonmonotonic function that takes a minimum value at a finite
value of p (black curve).
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FIG. 3. Time evolution of the pattern overlap during memory retrieval. A network model embeds an infinitely long sequence of memory
patterns with highly variable memory sizes. The sizes of memory patterns were chosen from a uniform distribution [0.01:0.1]. The pattern
overlap was obtained from (a) numerical simulations of a 4000-neuron network or (b) numerical solutions to the order-parameter equations.
The memory load, or equivalently the sequence length, was set as @=0.6 (left), 0.7 (middle), and 0.8 (right). Note that the range of the
horizontal axes is five times longer than that of Fig. 1 to show the stochastic behavior clearly.

including stochastic variables {a #} describe a set of stochas-
tic equations rather than deterministic ones even in the limit
of N—. We solved these stochastic equations in the case
where we determined the sizes of individual memory pat-
terns according to independent identical uniform distribu-
tions. Figures 3(a) and 3(b) display the time evolution of the
pattern overlap obtained from numerical simulations of the
original network model and from numerical solutions to the
macroscopic equations (18), respectively. We performed
these numerical simulations for various initial values of the
pattern overlap and the memory load. The results show that
the pattern overlap may initially be attracted to m=1, as in
the previous model (Fig. 1). This retrieval state was stable in
the previous model, storing memory patterns of a fixed size.
The overlaps, however, cannot stay permanently at this
value, when the sizes of successive memory patterns vary as
in the present case. The overlaps fluctuate beneath m=1 for a
while until they suddenly drop from the vicinity of unity to
0. If we use an analogy of the potential function, the state
m=1 is a metastable state, from which a random drift force
kicks out a “particle” to a global minimum defined by
m=0 within a finite lifetime.

To evaluate the lifetime of these metastable states, we
averaged the trajectories obtained by numerical simulations

overlap

20 40 60 80 100
time

of the original network model over many different realiza-
tions of the memory-size fluctuations [Fig. 4(a)]. As shown
in the figures, the averaged overlaps decay faster when the
network embeds a larger number of memory patterns, indi-
cating the lifetime is a decreasing function of the memory
storage. Solving the order-parameter equations gives a rea-
sonable approximation to the behavior of the averaged over-
laps at each value of the memory load [Fig. 4(b)]. To quan-
tify the decaying behavior, we plotted time evolution of the
averaged overlaps calculated by the order-parameter equa-
tions at various memory loads and for the same initial con-
ditions [Fig. 5(a)]. Fitting these curves with exponentially
decaying functions provides the decay constant 7 as a func-
tion of the memory load, that is, the length of memory se-
quence relative to the network size [Fig. 5(b)]. For a rela-
tively small number of memory patterns, 7 may be

practically regarded as infinity, and the network can trace the
memory sequence for a sufficiently long time. However, 7
can be much smaller in networks embedding a larger number
of memory patterns, and the network cannot retrieve a
memory sequence that is longer than the characteristic time
scale.

FIG. 4. Time evolution of the
average pattern overlap during
memory retrieval. The dynamical
trajectories were calculated from
(a) numerical simulations of a
100 1000-neuron network similar to
that shown in Fig. 3 or (b) numeri-

60 80
time

overlap

cal solutions to the order-
parameter equations. Other pa-
rameters were the same as in Fig.
3. The trajectories were averaged
over 1000 different realizations of
memory patterns with variable

20 40 60 80 100
time

60 80 100
time

sizes.
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FIG. 5. Estimation of the mean lifetime of the sequence memory
retrieval in Fig. 4. The average of the pattern overlap was taken
over 1000 different realizations of the memory size fluctuations. (a)
From top to bottom, the value of « was increased from 0.6 to 0.7
with a step size of 0.01. We fixed the values of other parameters at
the same values as in Fig. 2(b). (b) Exponential functions of a
could well fit the curves shown above to obtain the decay constant.

VI. POSSIBLE RELATIONSHIP TO NEURONAL
AVALANCHES

We have so far considered the associative memory model
loaded with an infinitely long sequence satisfying a periodic
boundary condition. The results of the previous analysis are
applicable to an associative memory model loaded with ex-
tensively many sequences of finite length. Such a network is
of particular interest since it can generate a set of retrieval
states similar to synchronous activity propagations of neu-
ronal avalanches. Here, as an interesting application of the
order-parameter analysis, we study an associative memory
that stores multiple memory sequences that obey power-law
distributions of the total activity size (defined later) and the
length. We consider the same power laws as neuronal ava-
lanches show. We will demonstrate that the stochastic fluc-
tuations in the memory pattern size affect the power-law
statistics of retrieved activities. Denoting the net activity
(the number of Is) of the kth memory pattern in the uth
sequence as a,;, we generate a,;’s recursively through a
Markov stochastic process, Pla,,a,:.a,5,-..)
=Py(a,1)P(a,s|a,)P(a,5la,,).... The conditional Gauss-
ian distributions, P(a,, .1]a,), satisfy

<a,u,k+l>a#,k=a =a,

(k=1,2,3,...) (22)
Var(au,kﬂ)a =4 = Uza’

where (...), = and Var(...), _, stand for the average and
variance taken under the condltlon a,=a. Here, o is a pa-
rameter characterizing the magmtude of fluctuations in the
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FIG. 6. Memory retrieval in a neural network storing infinitely
many sequences of finite size. Power-law distributions of the length
of embedded sequences (gray) and the lifetime of retrieved se-
quences (black) were shown. The dotted line indicates a power law
with exponent —2. The normalized sizes of sequential memory pat-
terns a,; were chosen recursively from a Gaussian distribution
with 0=0.05 according to the rules shown in Eq. (22). The range of
the pattern size was set as dy,;,= 107" and a,,,,=0.5. As we increase
the number of memory patterns (a=0.1, 0.2, 0.4, 0.8, and 1.6), the
position at which an exponential cutoff appears in the power-law
distributions shifts toward shorter lifetime. The inset shows the cut-
off position as a function of a.

pattern size. If @, ;,; is chosen outside a certain prescribed
range, Gpin @, j+1 dmax, WE terminate this sequence at the
kth memory pattern and start a new sequence as the
(u+1)th sequence. Setting the size of initial layers equal to
Amin» WE repeat the above process P(=aN) times to obtain
memory sequences with various lengths and sizes. From the
obtained sequences, we construct the following synaptic ma-
trix by their superposition:

aNl

555

mok ]va/va(1 [J,k)

aNl

5%

no ok Na,uk(l ,uk)

(gM ol Ay, k+1)(§M —ay, Y

gl (23)

where {£**} represents pattern vectors defined similarly to
Eqs. (3) and (5), and [,, is the length of the uth sequence.
The mathematical structure of the above stochastic wiring
procedure to embed memory patterns is essentially equiva-
lent to the critical branching process [12,13]. Thus, the size
and length distributions of the memory sequences generated
by this procedure should obey power laws of exponents
—3/2 and -2, respectively, so the retrieval of the memorized
sequences resembles the propagation of synchronous activi-
ties in neuronal avalanches. In fact, we can confirm the
power-law-obeying tail of extremely long memory sequences
in our numerical results (Fig. 6, gray line). However, the
present network model cannot retrieve such long sequences
perfectly, since the fluctuations in the memory-pattern size
destabilize the retrieval dynamics. To see this situation, we
constructed the lifetime distribution from the numerical so-
lutions to the order-parameter equations (18) and (19) for the
network defined with Egs. (22) and (23). Here, the lifetime
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of each retrieved sequence represents the time step at which
the pattern overlap falls off to the failure state m=0. The
lifetime distributions of retrieved sequences well replicate
the power law at relatively short lifetimes (Fig. 6, solid
curves), meaning that the stochastic size fluctuations do not
significantly disturb the retrieval of short sequences. How-
ever, the distributions deviate from the power law at longer
lifetimes. In fact, each distribution exhibits an exponential
cutoff representing a failure in memory retrieval at long life-
times. As expected from the result shown in Fig. 5(b), in-
creases in the memory load « shift the position of this cutoff
toward a shorter lifetime. Thus, the lifetime of the retrieved
activities exhibits a tail that deviates from the power-law
distribution.

VII. DISCUSSION

We have studied associative memory models embedding
memory sequences with various sizes and lengths. We have
derived the macroscopic order-parameter equations analyti-
cally by a standard method to obtain such equations in asso-
ciative memory models embedding fixed-size memory pat-
terns. The obtained equations well describe the dynamical
process of memory retrieval in the present models.

The fluctuations in the memory size create two dynamical
effects that have not extensively been studied in literature.
First, the nonuniformity of the network structure introduces a
numeral factor multiplied by the number of memorized pat-
terns in the order-parameter equations. Since this multiplica-
tive factor is greater than unity, the capacity of sequential
memory retrieval is smaller than that obtained without the
memory-size fluctuations. Second, the order parameters
themselves contain fluctuations since their equations depend
explicitly on the sizes of consecutive memory patterns.
Therefore, the retrieval process becomes stochastic rather
than deterministic, when the pattern size is to obey a stochas-
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tic process responsible for the power laws. The value of the
pattern overlap falls off quickly from the value correspond-
ing to a successful retrieval, as the random drift force origi-
nating from the memory-size fluctuations kicks out a particle
wandering around a local minimum. The typical time scale
that the state takes in leaving from the metastable retrieval
state is in general a monotonically decreasing function of the
total number of memorized patterns.

As an intriguing application of the present analysis, we
have investigated a sequential associative memory storing
extensively many sequences obeying a power-law length dis-
tribution. If the network can retrieve all memorized se-
quences correctly, the lifetime distribution of the retrieved
sequences should also obey the same power law as the length
distribution of memorized sequences. However, the fluctua-
tions in the size of memory patterns disable the network to
retrieve long sequences successfully. Therefore, the resultant
distribution of the retrieved sequences deviates from the
power law at long lifetimes by showing an exponential cut-
off. The lifetime of the retrieved sequences in this model
may correspond to the lifetime of synchronous activities
propagating during neuronal avalanches. In fact, an exponen-
tial cutoff was characteristic of the lifetime distribution ob-
tained from in vitro experiments of neuronal avalanches [10].
Such an exponential cutoff is considered to arise from the
finite size effect in cortical slices. However, the cutoff may
partly reflect the dynamical instability of memory retrieval,
as suggested by the present results.
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