
INV ITED
P A P E R

Computational Implications of
Lognormally Distributed
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This paper reviews some important, recent works on computation with sparsely

distributed synaptic weights, and discusses possible implications of the synaptic

principle of neural computation by spiking neurons, with potential

applications in neuromorphic engineering.

By Jun-nosuke Teramae and Tomoki Fukai

ABSTRACT | The connectivity structure of neural networks has

significant implications for neural information processing, and

much experimental effort has been made to clarify the

structure of neural networks in the brain, i.e., both graph

structure and weight structure of synaptic connections. A

traditional view of neural information processing suggests

that neurons compute in a highly parallel and distributed

manner, in which the cooperation of many weak synaptic

inputs is necessary to activate a single neuron. Recent

experiments, however, have shown that not all synapses are

weak in cortical circuits, but some synapses are extremely

strong (several tens of times larger than the average weight).

In fact, the weights of excitatory synapses between cortical

excitatory neurons often obey a lognormal distribution with a

long tail of strong synapses. Here, we review some of our

important and recent works on computation with sparsely

distributed synaptic weights and discuss the possible implica-

tions of this synaptic principle for neural computation by

spiking neurons. We demonstrate that internal noise emerges

from long-tailed distributions of synaptic weights to produce

stochastic resonance effect in the reverberating synaptic

pathways constituted by strong synapses. We show a spike-

timing-dependent plasticity rule and other mechanisms that

produce such weight distributions. A possible hardware

realization of lognormally connected networks is also shown.

KEYWORDS | Associative memory (AM); feedforward networks;

network connectivity; neural dynamics; neuromorphic engi-

neering; principal component analysis (PCA); recurrent net-

works; sparse coding; spike sequence; spike-timing-dependent

plasticity (STDP); stochastic resonance

I . INTRODUCTION

Much effort has been made to clarify the connectivity

structure of cortical networks [1]–[4], and these anatom-

ical or electrophysiological studies have shown that both
connectivity patterns and link weights of cortical neural

networks are highly nonrandom. For instance, the

connectivity patterns of cortical networks deviate signif-

icantly from those of random networks, exhibiting an

excess amount of network motifs consisting of a small

number of densely connected neurons [5], [6]. Further-

more, recent electrophysiological studies have revealed

that the amplitudes of excitatory–postsynaptic potentials
(EPSPs) between cortical neurons are not distributed as

Gaussian but are distributed as lognormal [6]–[10],

implying that some synapses are very strong while many

synapses are weak. For instance, Song et al. found signi-

ficantly more connections with strengths above 1 mV

than expected by best exponential or normal fit in rat

visual cortex [6] (p G 0:0001, where p is the probability

to have such observations from the null distributions).
The same data set was best fit by a lognormal distri-

bution. In CA3 area of the hippocampus [8], the weakest

half of excitatory synapses contributed only 17% of the
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total synaptic conductance, whereas the strongest 20%
contributed 52%. A lognormal distribution, but not

Gaussian, could account for such strong differences in the

strength of individual synapses. Because strong synapses

are sparse and weak synapses are dense, we may regard

neural networks with lognormal weight distributions as

‘‘strong-sparse and weak-dense’’ (SSWD) networks [11],

[12]. Evidently strong synapses are more effective in

propagating spikes to downstream neurons, though such
synapses are rare. In contrast, individual weak synapses are

not powerful enough to activate downstream neurons, but

they are very dense.

Then, a question arises: Are only strong synapses

important for information processing? Are weak synapses

unnecessary for creating network functions? Uncovering

the functional implications of network links with

extremely different strengths may furnish new insights
into the circuit mechanism of computation by the brain.

Moreover, recent progresses in supercomputing technol-

ogies and neuromorphic engineering [13] increase the

relevance of realistic network models of spiking neurons.

Therefore, understanding the dynamics of neural net-

works has great possibilities in the future development of

brain-style computing systems. In this paper, we discuss

recent experimental and theoretical results about the
roles of strong and weak synapses for the dynamics and

function of neural networks. Furthermore, we discuss

how possibly lognormal distributions of synaptic weights

appear in neural networks in an activity-dependent

manner, and how such novel learning rules may

contribute to computation in single neurons and neural

networks.

II . LOGNORMAL WEIGHT
DISTRIBUTIONS

Lognormal EPSP distributions have been found between

pyramidal neurons (i.e., the major type of cortical
excitatory neurons) in rodent neocortex [6], [7], [10] and

hippocampus [8]. Spine volumes were also suggested to

obey lognormal distributions [14], [15]. To elucidate the

basic computational function of lognormal weight dis-

tributions, we model a single neuron receiving random

spike inputs at AMPA receptor-mediated synapses obeying

such an EPSP distribution. Here, AMPA synapses are a

class of excitatory synapses that mediate a fast glutama-
tergic synaptic current in the brain. Then, we connect such

neuron models into two types of recurrent networks to see

whether the results shown in single neurons are also valid

in neural circuits.

A. Lognormal EPSP Distributions in Neocortex
and Hippocampus

Fig. 1(a) schematically illustrates an experimentally

observed distribution of EPSPs ðxÞ measured from the

resting potential, which is described as a lognormal

distribution

pðxÞ ¼
exp �ðlog x� �Þ2=2�2
� �

ffiffiffiffiffiffi
2�
p

�x
: (1)

In this distribution, a minority of EPSPs between cortical

excitatory neurons can be as large as several millivolts,

while the majority are weak (G 1 mV). For example, the

amplitude of the largest ESPS can be as big as 10 mV,
which is much larger than the typical amplitude 0.1 �
1 mV of EPSPs of cortical synapses. Note that a large

EPSP in a neuron pair may be mediated by multiple

synaptic contacts between the pair. The lognormal dis-

tribution typically shows a long tail of strong synaptic

weights. In fact, the coexistence of a small number of

extremely strong connections and a large number of weak

or modestly strong connections is important for what we
show below, but whether the precise shape of weight

distributions is lognormal is not crucial. In many cases, we

could replace a lognormal weight distribution with a

combination of a Gaussian weight distribution and several

very strong connections. Therefore, the long-tailed feature

is essential, but the exact lognormality is not really

important.

Fig. 1. Stochastic resonance effects on neural firing by lognormal

weight distributions. Modified from [11]. (a) The lognormal distribution

of experimentally measured EPSP amplitudes is shown [6]. Inset plots

the same distribution in the normal scale. We used this distribution in

the present simulations of spiking neurons. (b) Schematic illustration

of numerical simulations performed on a single integrate-and-fire

neuron. (c) Coherence between output and input to the strongest

synapse was calculated by numerical (solid) or analytical (dashed)

methods as a function of input spike rate, or equivalently, the mean

membrane potential. Colors indicate synaptic inputs in (b). A similar

curve was calculated for the strongest synapse of Gaussian-distributed

EPSP amplitudes (dotted–dashed line).
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B. Lognormal Weight Distributions Induce Stochastic
Resonance

The impact of a presynaptic spike at a strong synapse,

which typically is as large as several millivolts, may amount

to almost half of the gap between the resting membrane

potential (�70 mV) and firing threshold (�50 mV). In this

section, we show that the functional implication of such

long-tailed weight distributions for neural information

processing may be noise genesis on the membrane
potential dynamics of single neurons [11], [12]. Implica-

tions of such noise genesis in network dynamics and

network-level computation will be shown later. We

performed most of the simulations presented in this paper

using the following leaky integrate-and-fire model:

dv

dt
¼ � 1

�m
ðv� VLÞ � gEðv� VEÞ � gIðv� VIÞ (2)

where v is the membrane potential and the second and

third terms on the right-hand side represent conductance-

based excitatory and inhibitory synaptic inputs, respec-
tively. The excitatory and inhibitory synaptic conductances

gE and gI normalized by the membrane capacitance obey

dgX

dt
¼� gX

�s
þ
X

j

GX;j

X
sj

�ðt� sj � djÞ; X¼E; I (3)

where �ðtÞ is the delta function; and Gj, dj, and sj are the

weight, delay, and spike timing of synaptic input from the

jth neuron, respectively. The values of Gj are distributed

such that the corresponding EPSPs are measured from the

resting potential obeying the lognormal distribution shown

in (1).

Cortical excitatory synaptic transmissions are known to
be mediated by two types of glutermatergic synaptic

current, i.e., fast AMPA receptor-mediated currents (�s �
2–3 ms) and slow NMDA receptor-mediated currents

(�s � 150 ms). We note that, in our model, the excitatory

synaptic current described by (3) only involves the AMPA

current, but does not contain the NMDA current. The

NMDA current is known to play a crucial role in activity-

dependent modifications of synaptic conductance (synap-
tic plasticity) in hippocampal and neocortical circuits.

Some models also suggest that the NMDA current is

crucial for the generation of stable persistent neuronal

firing [16] that is typically observed in working memory

tasks, or spontaneous cortical activity [8] through rever-

berating synaptic input. However, as we will see later, the

AMPA current is sufficient to maintain the stability of

recurrent network activity under sparse synaptic distribu-
tions. To show this clearly, we do not include the NMDA

current in our model.

Now we show that a lognormal weight distribution of

excitatory synapses achieves aperiodic stochastic reso-

nance on a single neuron receiving low-frequency spike

inputs at individual excitatory and inhibitory synapses

[Fig. 1(b)]. We measure the effect of stochastic resonance

by measuring the similarity between inputs to a group of
very strong synapses and output spike trains of the

postsynaptic neuron. In so doing, we vary the average

membrane potential of the neuron by changing the rate of

presynaptic spikes at weak-dense synapses, and calculate

the cross-correlation coefficients (CCs) between output

spikes and inputs to the strongest synapses. We find that

CCs are maximized for input to the strongest synapse at a

subthreshold membrane potential value that is about the
midpoint between the resting potential and firing thresh-

old. At more hyperpolarized levels, even an extremely

strong EPSP (�10 mV) cannot evoke a postsynaptic spike,

whereas at more depolarized levels, the neuron can fire

without strong inputs. Here an interesting fact is that

stochastic resonance does not work for a Gaussian

distribution with the same mean and variance of the

lognormal distribution [dotted–dashed line in Fig. 1(c)],
uncovering the advantage of SSWD connections.

We can calculate the CC between input spike at strong

synapses and output spike trains as

CC ¼ xinðtÞxoutðtÞh i � xinðtÞh i xoutðtÞh iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xinðtÞ2
� �

� xinðtÞh i2
� �

xoutðtÞ2
� �

� xoutðtÞh i2
� �q

¼ PrðxoutjxinÞ
ffiffiffiffiffiffiffi
rin

rout

r
(4)

by assuming that spike trains obey a low-rate Poisson

process. Here, rin and rout are the firing rate of input and

output sequences, respectively, and PrðxoutjxinÞ is the

conditional probability of an output spike for a given input

spike at strong synapses. In numerical simulation, we

evaluated PrðxoutjxinÞ by detecting a postsynaptic spike

within the epoch of EPSP rise from the arrival of an input

spike. We can calculate PrðxoutjxinÞ from the stationary
probability density of the membrane potential PðvÞ
obtained by analytically solving the Fokker–Planck equa-

tion of the membrane potential driven by the noise

generated by weak-dense synapses. Namely, the condi-

tional probability Pi of having an output spike given input

to the ith strong synapse is equal to the area of the

stationary density function satisfying vþ Ee;iðvÞ � vthr,

where Ee;iðvÞ is the effective amplitude of EPSP measured
from the average membrane potential. By solving the

lower bound for the integration, we can obtain

Pi ¼
ZVthr

ðVE�VLÞVthr��EiVE
ðVE�VLÞ��Ei

PðvÞdv (5)

where the analytic expression of PðvÞ is found in [11]. The

expression given in (5) is valid for an arbitrary strong

synapse. Thus, we can obtain the theoretical curve of cross

correlation [dashed line in Fig. 1(c)] by substituting Pi of

the strongest synapse into PrðxoutjxinÞ in (4). In the above

theoretical treatment, the division of weak and strong
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synapses remains somewhat arbitrary because the theory
does not give a method to perform this division in a self-

consistent manner. Therefore, we determined this division

through numerical simulations, and found that the

theoretical curve best coincided with numerical results

when we divided 1000 excitatory synapses on a neuron

into the five strongest synapses and the remaining weak

synapses.

III . ACTIVE NOISE GENESIS IN
RECURRENT CIRCUITS

In Section II, we showed that experimentally observed

lognormal weight distributions enable single neurons to

respond reliably to spike inputs at strong synapses with the

help of stochastic resonance emergent from the noise

generated by massive inputs to weak synapses. We further

show that a similar stochastic resonance effect occurs

consistently on neurons embedded in a recurrent network.
In the following, we show two such examples.

A. SSWD Recurrent Networks Modeling
Spontaneous Cortical Activity

The above stochastic resonance effect on single

neurons is by itself an interesting example of the benefit

of noise in biological systems. However, whether cortical

neurons are dynamically set at the optimal noise level in a
recurrent network is a highly nontrivial issue. We can

show that this is indeed the case in SSWD neural networks.

To see this, we conduct numerical simulations of a

recurrent network model of 10 000 excitatory and 2000

inhibitory neurons that are randomly connected with

coupling probabilities of excitatory and inhibitory connec-

tions being 0.1 and 0.5, respectively. Excitatory-to-

excitatory connections obey the EPSP distribution shown
in (1). The details of the model are found in [11]. Initially,

all neurons are silent in the resting state. We may apply

brief external Poisson spike trains to some neurons to

trigger spontaneous activity of the network. Then, the

model sustains a stable asynchronous firing even in the

absence of external input [Fig. 2(a)]. This spontaneous

network activity emerges purely from reverberating

synaptic input, is stable in a very low-frequency regime
[Fig. 2(b): typically, 1 � 2 spikes/s), and is highly irregular

(the average coefficient of variation �1). All these

properties are consistent with the spontaneous activity

observed in cortical neurons [17].

Importantly, the reverberating synaptic input generat-

ed in the SSWD network maintains the average values of

the membrane potentials of excitatory neurons at around

�60 mV [Fig. 2(c)], at which we show that the spike
transmission at strong-sparse synapses becomes most

Fig. 2. Spontaneous activity in an SSWD network. Modified from [11]. (a) Spike raster is shown for an SSWD network of 10 000 excitatory (red) and

2000 inhibitory (blue) cells. The weights of excitatory synapses obey a lognormal distribution. (b) Distributions of firing rates are shown for

excitatory and inhibitory neural populations. (c) A typical example of the fluctuating membrane potential of an excitatory neuron.

(d) Spontaneous activity of the SSWD network contains many sequences propagating through strong synaptic pathways gated by stochastic

resonance.

Teramae and Fukai: Computational Implications of Lognormally Distributed Synaptic Weights

Vol. 102, No. 4, April 2014 | Proceedings of the IEEE 503



reliable [Fig. 1(c), shaded area]. In this state, massive
inputs to weak-dense synapses depolarize the average

subthreshold membrane potential, on top of which inputs

to strong-sparse synapses may induce sparse spiking. Then,

these spikes are distributed to weak synapses on some

neurons to produce noise fluctuations in their membrane

potentials. A characteristic feature of the SSWD network is

that the same spikes propagate through multiple pathways

mediated by strong synapses, generating multiple se-
quences in spontaneous activity [Fig. 2(d)]. Noise genesis

by weak-dense synapses is necessary to keep the efficiency

of this spike transmission at strong synapses optimal. Thus,

weak-dense and strong-sparse synapses cooperate with

each other for generating stable ongoing activity. Whether

computation in cortical circuits relies on asynchronous

irregular firing or spike sequences has been debated. Our

model suggests the possibility that they are different,
inseparable aspects of the same network mechanism.

B. Stability of Sparse Spontaneous Activity
The maintenance of dynamical stability is a fundamen-

tal problem, when considering the spontaneous activity in

recurrent neural network models. Therefore, we studied

the conditions on network parameters to ensure the

stability of the SSWD network model with of leaky-
integrate-fire neurons. We can perform the stability

analysis by means of the mean-field approximation [11].

The results of this theoretical analysis revealed that

spontaneous activity in the SSWD network is stable only

when excitatory-to-excitatory synaptic connections on

average show longer delays than inhibitory-to-inhibitory

synaptic connections. It is, therefore, important to inhibit

a postsynaptic neuron slightly before excitatory synaptic
inputs arrive at the neuron to keep an excitation–

inhibition balance in the SSWD network. It is noted that

this condition on synaptic delay may be loosened if we use

a different mathematical model of spiking neurons, such as

adaptive leaky integrate-and-fire neuron models that self-

control the excitability, depending on the recent history of

neuron’s activity [18].

A similar recurrent network model was proposed for
the hippocampal CA3 circuit [8]. This recurrent network

model uses a slow NMDA current to achieve stable

spontaneous firing. We expected that the slow NMDA

current would improve the stability of our network model.

However, our results demonstrate that NMDA receptors

are not necessary for the stability of spontaneous

reverberating activity in recurrent networks with lognor-

mal connections.

C. Associative Memory SSWD Recurrent Network
The hippocampus is known to be crucial for episodic

memory processes in the brain. In particular, hippocampal

CA3 has sparse recurrent connections, and after pioneer-

ing work by Hopfield [19], [20] on associative memory

(AM) network models, the CA3 circuit has been hypoth-

esized to be an attractor network for retrieving memorized
activity patterns from disturbed cues for stored memory.

This pattern completion hypothesis is now well supported

by experiments [21]. It was recently shown that the local

circuit of hippocampal CA3 has a lognormal distribution of

synaptic conductance with a long tail [8]. We show that

active noise genesis by lognormal weight distributions and

the resultant stochastic resonance effect produces a good

performance of attractor neural networks in memory
retrieval.

Properties of pattern completion, such as storage

capacity and memory retrieval dynamics, have been

extensively studied in the statistical mechanics of the

Hopfield AM network and its variants [22]–[27]. AM

models of spiking neurons have been also studied, but their

performance in memory storage is generally not so good as

that of models with binary or analog neurons [28]–[37].
We construct AM network models of spiking neurons

with lognormal weight distributions of recurrent connec-

tions to show that such distributions can generate internal

noise useful for the retrieval of an embedded memory

pattern [38].

We briefly explain how we embed p random binary

patterns of 0 and 1 f��i g
1;2;...;p
i¼1;2;...;NE

into excitatory-to-

excitatory connections obeying a lognormal weight distri-
bution on each postsynaptic neuron. We created sparse

random patterns according to

Prob ��i ¼ 1½ � ¼ a Prob ��i ¼ 0½ � ¼ 1� a (6)

where sparseness a obeys 0 G a G 1 and constraintP
i �
�
i ¼ aNE to suppress the nonhomogeneity across

different memory patterns. If a is sufficiently small,
neurons are activated only sparsely in each memory

pattern. Conventionally, the weight matrix of the AM

network model is determined by the local Hebbian rule, to

which each memory pattern contributes the product of

presynaptic and postsynaptic neural activities to synaptic

connections and the contributions from multiple memory

patterns are superimposed linearly: Tij ¼
Pp

�¼1 �
�
i �

�
j þ �ij.

Here, the second term 	ij 2 ½0; 1Þ is an analog-valued
random variable to make the distribution of Tij continuous

[35], [37]. This term is absent from the conventional AM

models, but it is introduced here for the genesis of

spontaneous activity specifically in networks storing only a

small number of memory patterns. Information about the

stored memory patterns is represented in the relative

magnitudes of the elements of the connection matrix.

Therefore, when we create a continuous connection
matrix obeying a lognormal distribution, we should refer

to this information as much as possible. Therefore, we

determine the values of EPSP Vij between excitatory

neurons i and j so that the cumulative frequency of Vij may

coincide with that of Tij [Fig. 3(a)]. In a lognormally

connected network, we have to suppress the presence of

hub neurons sending many connections to other neurons.
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We should also eliminate strong reciprocal connections

and triangle network motifs to avoid high-frequency

burst firing in some neurons. These details are explained

in [38].

Numerical simulations reveal several interesting dy-

namical features of the model. The network is able to

sustain spontaneous activity at low firing rates without

external input. If neurons encoding memory pattern 1 are

stimulated by a brief cue signal, the model changes its

dynamic behavior from spontaneous activity to a retrieval

state, in which the average firing rates of the encoding

neurons are much higher than those of nonencoding

Fig. 3. Memory recall in an SSWD AM model. Modified from [38]. (a) A lognormal Hebbian connection matrix (right) was constructed from the

standard Hebbian connection matrix (left). Lower panels show the distributions of the corresponding matrix elements, and the upper panels

show their cumulative distributions. (b) Spike raster (upper) and the evolution of mean firing rates (lower) is shown. At time 600 ms, an external

cue (blue) was applied to retrieve a memorized pattern 1. (c) Distributions of the membrane potential over neurons encoding pattern 1 (blue)

and nonencoding (green) neurons.
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neurons [Fig. 3(b)]. The distribution of the subthreshold
membrane potentials is more depolarized or more

hyperpolarized in the encoding and nonencoding neurons,

respectively, which underlies the significantly different

firing rates of the two groups [Fig. 3(c)]. As in other AM

network models, this network model can retrieve a

memory pattern successfully if the number of stored

patterns is below a certain upper bound. It is interesting to

compare the storage capacity (or the information capacity)
between different AM models of spiking neurons even

though a rigorous comparison is difficult. The storage

capacity in general increases with the sparseness of

memory patterns and decreases with the sparseness of

synaptic connectivity. Parameter 
 ¼ ðpajlnaj=cENEÞ well

characterizes such properties of AM networks with similar

sparseness and network size. The value of this parameter is

0.036 (NE ¼ 10 000, cE ¼ 0:1, a ¼ 0:12, p ¼ 140) in our
model, 0.0058 (NE ¼ 8000, cE ¼ 0:25, a ¼ 0:1, p ¼ 50) in

[35], and 0.0056 (NE ¼ 8000, cE ¼ 0:2, a ¼ 0:05, p ¼ 60)

in [34]. Therefore, our model suggests that lognormal

weight distributions significantly improve the storage

capacity of spiking neurons.

The memory load also has a lower critical value below

which spontaneous firing turns unstable, meaning that the

network spontaneously evolves into one of the memory
states without a cue signal. Unstable spontaneous firing

states at a low level of the memory load have also been

known in previous models [34]. It has been also pointed

out that the Hebbian component should be sufficiently

small to maintain stable spontaneous firing [35], [37]. The

instability of spontaneous firing states shown at a very low

memory load seems to be a common feature of the AM

networks of spiking neurons with a Hebbian connection
matrix. Altogether, the present model can perform the AM

function at an intermediate level of memory load between

the upper and lower critical values.

IV. ACTIVITY-DEPENDENT
MECHANISMS FOR LOGNORMAL
WEIGHT DISTRIBUTIONS

Biological mechanisms to realize the lognormal amplitude

distribution of EPSPs remain unclear at present. Synaptic

plasticity, however, is a promising candidate for the
underlying mechanism, and several Hebb-like learning

rules have been proposed. Here, Hebb-like learning rules

refer to any learning rule that modifies synaptic weights

depending on both presynaptic and postsynaptic neural

activities.

A. Rate-Dependent Plasticity Mechanisms
The model proposed by Koulakov et al. is an extension

of the conventional Hebbian learning rule using a

multiplicative rather than additive synaptic growth rate

[39]. In this model, the rate of weight modification dWij=dt

for a synapse from neuron j to i depends on the product of
postsynaptic and presynaptic firing rates fi and fj and the

current value of synaptic strength Wij as

dWij

dt
¼ �1f
i W�

ij f �i � �2Wij:

Thus, the first term with coefficient �1 represents the rate
of multiplicative and nonlinear weight growth. Exponents


, �, and � characterize the nonlinear dependence of

synaptic plasticity on fi, Wij, and fj, respectively. The

second term with coefficient �2 is a passive linear decay of

the synaptic strength. Assuming a linear neuron model as

fi ¼
X

j

Wijfj;

Koulakov et al. showed that the learning rule successfully

generates a lognormal distribution for Wij if values of the

coefficients are properly chosen such that the sum of

exponents 
þ � may be close to, but slightly smaller than,

unity (e.g., 0.8). Remarkably, besides the lognormal
distribution of EPSP amplitudes, the proposed learning

rule concurrently gives a lognormal distribution of firing rate

over neural population, which is another interesting example

of lognormal distributions found in the brain [40], [41]. An

experimentally testable prediction of the rate-based mech-

anism is that the weights of synapses terminating on a given

neuron are correlated, but the average synaptic weights on

individual neurons are widely distributed. Though this
prediction has not been proved physiologically, advanced

imaging techniques using voltage-sensitive fluorescent

protein [42] may enable direct measurements of such cor-

relations within and distributions over cortical neurons in

the future.

B. Basic Properties of Spike-Timing-Dependent
Plasticity

Spike-timing-dependent plasticity (STDP) modifies the

weight (or strength) of synaptic connections between

neurons depending on the relative timing of spike firing of

postsynaptic and presynaptic neurons [9]. Though differ-
ent forms of timing dependence (time window functions)

are known for different types of synapses and neurons, the

well-studied class of STDP describes Hebbian excitatory

synapses with asymmetric time window functions. Name-

ly, a synapse is potentiated (depressed) if the postsynaptic

neuron fires earlier (later) than the induction of EPSP by a

presynaptic spike input to the synapse. It is known that

when the weight update rule does not depend on the
weight (additive STDP), the dynamics of weight update is

unstable, separating strong synapses and weak synapses

further apart [Fig. 4(a)]. Therefore, the asymmetric

Hebbian STDP gives rise to strong competition among

excitatory synapses. The unstable synaptic dynamics of

additive STDP, however, is theoretically problematic

because it requires hard boundaries to maintain synaptic
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weights within a finite positive value range. The unstable

dynamics also makes a flexible reorganization of synapses

difficult when external inputs change their spatio–
temporal structure.

Physiology has shown that the weight update of

STDP not only depends on the window function, but also

on the current magnitudes of synaptic weights [43]. The

weight dependence was shown for excitatory synapses in

the hippocampus (excitatory projections from CA3 to

CA1). According to this rule, long-term potentiation

(LTP) shows only weak or no weight dependence, but
long-term depression (LTD) shows strong weight depen-

dence: synaptic weight is reduced in proportion to the

current magnitude of the weight. Thus, the total

amplitude of weight update depends on the multiplication

of the temporal component determined by the timing

window function and the weight-dependent component,

and the direction of weight update is determined by the

relative timing between presynaptic and postsynaptic
spikes. Due to the weight dependence, the dynamics of

weight update is stable in multiplicative STDP, which is a

virtue of the multiplicative rule. However, because

stronger synapses undergo stronger depression, it is

difficult to develop strong synapses and synaptic weights

obey a Gaussian distribution, implying that synaptic

weights are not specialized for the structure of synaptic

input [Fig. 4(b)].

C. STDP for the Generation Mechanism of
Lognormal Weight Distributions

Log-STDP is a phenomenological STDP rule to

generate a lognormal weight distribution of excitatory

synapses when they receive uncorrelated Poisson spike

trains [44]. We can derive log-STDP from multiplicative

STDP by modifying the linear weight dependence of

synaptic depression. In log-STDP, LTD exhibits linear

weight dependence for weak synapses, but does not show

strong weight dependence for large synaptic weights.

Thus, the weight dependence of log-STDP is represented
by the following scaling factor to the weight update:

fþðJÞ ¼cþ expð�J=J0BÞ

f�ðJÞ ¼

c�J

J0
; for J� J0

c� 1þ 1



ln 1þ
ðJ=J0�1Þð Þ

	 

; for J> J0

8>>><
>>>:

where fþ is for LTP and f� for LTD. As mentioned above, fþ
and f� for J � J0 are almost identical to multiplicative

STDP rule [43], and the key feature of log-STDP is the
sublinear saturation of f� for large values of J. Parameter 

characterizes the log-like saturation of the LTD compo-

nent, and parameter � is chosen such that the function fþ
may be approximately constant around J0 and exhibits an

exponential decay only for values of J much larger than J0.

Weak LTD for strong synapses allows synaptic weights to

grow, generating a long tail in the synaptic weight

distribution [Fig. 4(c)].
A virtue of log-STDP is its sensitivity to correlated spike

inputs. Though the detection of correlated spike inputs by

STDP has been already known for additive STDP,

correlated inputs drive excitatory synapses toward the

tail of weight distribution in a graded manner, and this

graded competition between synapses allows log-STDP to

detect and analyze the relative strength of input correla-

tions more effectively than additive or multiplicative
STDP. For example, log-STDP can perform the principal

component analysis (PCA) of the correlation structure of

input spike trains (Fig. 5) [45].

Log-STDP solves the previously mentioned dilemma of

additive and multiplicative STDP models between the

stability of synapses and their functional specialization. To

this end, log-STDP uses the long tail of weight distribu-

tions. Stable dynamics of synaptic modifications is possible
because the scaling factors for both LTP and LTD saturate

and the two competing effects are balanced on the long

tail. Moreover, strong synapses tend to remain strong if

input spike correlations are unchanged. However, once the

input correlation structure changes, log-STDP adequately

changes the weights of the individual synapses to adapt to

the new configuration, achieving a robust functional

specialization of synapses in the space of spike correla-
tions. Thus, log-STDP may work better in a correlation-

based neural code than in a rate-based code. However, we

have to remember that the sensitivity of STDP to the firing

rate depends on several factors, such as triplet interactions

between presynaptic and postsynaptic spikes. An abstract

generalization of STDP with nonlocal causality was also

shown to generate approximately lognormal weight

distributions [46].

D. Other Mechanisms
We discuss yet another model that realizes the

lognormal distribution of EPSP amplitudes based on an

Fig. 4. Synaptic dynamics in the three STDP models. Evolution of

synaptic weights on a neuron receiving Poisson inputs is schematically

illustrated for (a) additive, (b) multiplicative, and (c) lognormal STDP

models.

Teramae and Fukai: Computational Implications of Lognormally Distributed Synaptic Weights

Vol. 102, No. 4, April 2014 | Proceedings of the IEEE 507



additive Hebbian learning rule. As in Koulakov’s

approach, this learning rule can also explain the

lognormal distributions of EPSP amplitudes and firing

rates.

Before providing details, we note that spontaneous

activity in the SSWD network model exhibits a long-tailed,

actually lognormal, distribution of firing rates, as shown in
Fig. 2(b). We can understand the origin of this lognormal

distribution in almost the same way as discussed in [47].

Because each neuron in the network receives a large

number of approximately independent identical spike

inputs, the sum of these inputs is well described by a

Gaussian distribution as a result of the central limit

theorem. The sum of inputs determines the output firing

rate of each neuron through the response function or the
f � I curve of neurons. In a low-firing-rate regime, which

holds for the spontaneous activity of the network model,

the response function of leaky integrate-and-fire neurons

is well approximated as

f / 
� I

�
exp �ð
� IÞ2

�2

	 


where 
 and � are parameters characterizing the firing

threshold and the strength of input fluctuations, respec-

tively [48]. Substituting I ¼ I0 þ DI, where I is the mean

and DI is the deviation, and expanding the above
expression with respect to DI, we obtain

f / exp �2
ð
� IÞ
�2

DI

	 

:

Because DI obeys a Gaussian distribution, the logarithm of

firing rate log f also obeys a Gaussian distribution,

implying that the firing rate f obeys a lognormal

distribution.
We note that the above derivation of the lognormal

distribution of firing rates does not assume the lognormal

distribution of EPSP amplitudes on each neuron. There-

fore, the two distributions are essentially unrelated, and

the lognormal distribution of firing rate arises without the

lognormal distribution of EPSP amplitudes. This implies

that if the network has a certain mechanism to relate the

lognormal firing-rate distribution to the distribution of
EPSPs, we can explain the latter lognormal distribution

consistently. The following Hebbian synaptic plasticity

rule provides such a mechanism:

dWij

dt
¼ "1fifj � "2Wij:

In fact, in the steady solution Wij / fifj, the synaptic weight

Wij obeys a lognormal distribution because the product of

lognormally distributed variables, i.e., fifj, again obeys a

lognormal distribution. This mechanism is schematically

illustrated in Fig. 6. Extending the learning rule to a spike-
based rule and implementing it in a recurrent network

model are interesting future problems.

V. ATTEMPTS TOWARD
NEUROMORPHIC ENGINEERING

Neuromorphic engineering is an attempt to construct

electronic hardware models of the brain by realizing

various functional properties of neurons and synapses on

hardware chips. Despite recent progresses in nanoscale

manufacturing technologies, large-scale neuromorphic

hardware systems bear the tradeoff between detail level
and required chip resources. Because the number of

recurrent synapses typically scales as OðN2Þ in a network

of N neurons, having a good hardware model of synapses is

of particular importance for solving this tradeoff. In other

words, an effective solution to save resources on chips is to

reduce the detail level of synapses. Recently, a hardware

system that offers a 4-b resolution of synaptic weights

modifiable with discretized STDP has been developed [13].
While a benchmark of this synapse model indicates that

the resolution of synaptic weights is already useful for

large-scale network simulations, it is unclear whether the

same resolution is also useful for simulations of an SSWD

recurrent network. At a first glance, the low resolution of

synaptic weights makes it hard to effectively sample a long-

tailed weight distribution.

Fig. 5. PCA of input correlation structure by log-STDP. Modified from

[45]. (a) Suppose that a neuron receives four groups of synaptic inputs

that are correlated within and between the groups, with the pairwise

correlation matrix shown below. (b) The principal components of input

spike trains are obtained from the correlation matrix. (c) Log-STDP

reorganizes the configuration of synaptic weights approximately in the

direction of the first principal component. This nearly optimizes its

detection capability.
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We discretize a lognormal weight distribution in an

n-bit resolution up to the maximum value Jmax. We set the

discretized weight value of each synapse in the network at

the midvalue of the corresponding bin. If the weight of

some synapse is greater than Jmax, we set the discretized
value to Jmax. Therefore, all synaptic weights stronger than

Jmax are identified in the discretized model. Fig. 7(a) and

(b) shows two examples of large-scale network simulations

for n ¼ 3, Jmax ¼ 16 mV and n ¼ 4, Jmax ¼ 12 mV,

respectively, demonstrating that both models can generate

spontaneous network activity. However, the spiking

pattern of neural population as well as the distributions

of firing rate and firing irregularity differ significantly
from experimental observations in the former model.

Therefore, 4 b may be the minimal requirement for

discrete synapses to obtain a natural firing pattern of

cortical neurons.

VI. FUTURE DIRECTIONS

In neuromorphic engineering, using most of the dis-

cretized weight values to represent weak-dense synapses

is evidently a strong restriction on the capacity of

information representation by SSWD networks. However,

some experiments claim that cortical synapses are binary

[49], and models are known that create useful computa-

tions with binary synapses [50]. The resolution of strong
synapses necessary for efficient neural computation

remains to be clarified. It is also an interesting question

whether long-tailed distributions of synaptic weights add

novel features to computation by a single neuron with

complex morphological structureVthe properties of

biological neurons that have been largely ignored in

engineering applications. In reality, the EPSP amplitude

measured in a neuron pair may represent the net strength

of multiple synaptic contacts between the presynaptic and

postsynaptic neurons. In such a situation, the spatial

distribution of lognormal synapses on the dendrites may

significantly influence signal transmission between neu-
rons. In fact, stochastic resonance-like effects were

revealed in morphologically realistic neuron models

responding to brief changes in correlations among

distributed noise sources [51]. However, several mechan-

isms are known in cortical neurons to counteract the

distance-dependent filtering and attenuation of signal

propagation along the dendrites [52], [53]. These

mechanisms work to equalize the influences of distal
and proximal synapses on somatic voltage, and may

ensure the validity of the present results in networks of

morphological neurons.

In a Hopfield model, the attenuation of strong

recurrent signals, typically with the use of nonmonotonic

response functions, is known to drastically improve the

storage capacity [25], [54], [55], which would contradict

the main claim of this paper. In Hebb’s learning rule,
strong synapses arise from the sum of correlated presyn-

aptic and postsynaptic activities that occur in many

memory patterns. This implies that the activation of

strong synapses may coactivate neurons encoding different

patterns, thus increasing crosstalk noise between different

memory states. The attenuation of strong synaptic inputs

by a nonmonotonic response function suppresses the

crosstalk noise while preserving sufficiently strong signals
to retrieve memory patterns. Taking this lesson into

account, we would expect a further improvement of

storage capacity in our model if we constructed lognormal

synaptic weights after eliminating an adequate amount of

strong synapses from the conventional Hebbian synaptic

Fig. 6.Mechanism to generate lognormal distributions. Low-rate spontaneous activity generates the lognormal distribution of EPSPs (upper left),

which in turn gives the lognormal distribution of firing rates (upper right) through a rate-based Hebbian learning rule.
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matrix. Whether this really occurs is an interesting open

question.
In summary, we conjoin two fundamental principles in

signal processing and complex phenomena observed in

cortical neural networks: stochastic resonance and noisy

internal brain states. The key of this link is the coexistence

of a spectrum of SSWD connections that gives a

mechanism by which excitable networks generate and

maintain optimal noise level for efficient spike communi-

cation. These results have implications for the role of noise
in networks with a broad spectrum of coupling strengths,

such as the gating of specific signal pathways with the

probabilities of pathway selection modulated by the

dynamics of internal noise generation. We have shown
that such internal noise enables AM models of spiking

neurons to have relatively large storage capacity compared

with the previous spiking network models. This result is

interesting because it gives an example in which noise

plays an active role in information processing, and because

it proves that spiking neurons are much less effective than

binary neurons as far as the capacity of AM is concerned.

In particular, recent experiments have suggested that
spontaneous cortical activity provides prior information

for probabilistic inference, spontaneously cycling neural

Fig. 7. SSWD networks in neuromorphic engineering. (a) Schematic illustration of a 4-b model of modifiable synapses is replicated from [5].

(b) Spike raster (upper) and firing-rate distribution (lower) for 3-b lognormally distributed synapses with the maximum weight of 16 mV.

(c) Similar results shown for 4-b synapses with the maximum weight of 12 mV.
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activities associated with past experiences [56]. How such
probabilistic computation may be implemented by lognor-

mal weight distributions and related plasticity rules is an

intriguing open question. h
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[6] S. Song, P. J. Sjöström, M. Reigl, S. B. Nelson,
and D. B. Chklovskii, ‘‘Highly nonrandom
features of synaptic connectivity in local
cortical circuits,’’ PLoS Biol., vol. 3, no. 3,
2005, e68.

[7] S. Lefort, C. Tomm, J. C. Floyd Sarria, and
C. C. H. Petersen, ‘‘The excitatory neuronal
network of the C2 barrel column in mouse
primary somatosensory cortex,’’ Neuron,
vol. 61, pp. 301–316, 2009.

[8] Y. Ikegaya, T. Sasaki, D. Ishikawa, N. Honma,
K. Tao, N. Takahashi, G. Minamisawa, S. Ujita,
and N. Matsuki, ‘‘Interpyramid spike trans-
mission stabilizes the sparseness of recurrent
network activity,’’ Cereb. Cortex, vol. 23, no. 2,
pp. 293–304, 2013.

[9] B. Barbour, N. Brunel, V. Hakim, and
J. P. Nadal, ‘‘What can we learn from synaptic
weight distributions?’’ Trends Neurosci.,
vol. 30, no. 12, pp. 622–629, 2007.

[10] L. Sarid, R. Bruno, B. Sakmann, I. Segev, and
D. Feldmeyer, ‘‘Modeling a layer 4-to-layer
2/3 module of a single column in rat
neocortex: Interweaving in vitro and in vivo
experimental observations,’’ Proc. Nat. Acad.
Sci. USA, vol. 104, pp. 16353–16358, 2007.

[11] J.-N. Teramae, Y. Tsubo, and T. Fukai,
‘‘Optimal spike-based communication in
excitable networks with strong-sparse and
weak-dense links,’’ Sci. Rep., vol. 2, 2012,
DOI: 10.1038/srep00485.

[12] J. Teramae, Y. Tsubo, and T. Fukai,
‘‘Long-tailed statistics of corticocortical
EPSPs: Origin and computational role of noise
in cortical circuits,’’ in Advances in Cognitive
Neurodynamics (III). Amsterdam,
The Netherlands: Springer-Verlag, 2013,
pp. 161–167.

[13] T. Pfeil, T. C. Potjans, S. Schrader, W. Potjans,
J. Schemmel, M. Diesmann, and K. Meier,
‘‘Is a 4-bit synaptic weight resolution
enough?-constraints on enabling spike-timing
dependent plasticity in neuromorphic
hardware,’’ Front. Neurosci., vol. 6, 2012,
DOI: 10.3389/fnins.2012.00090.

[14] N. Yasumatsu, M. Matsuzaki, T. Miyazaki,
J. Noguchi, and H. Kasai, ‘‘Principles of

long-term dynamics of dendritic spines,’’
J. Neurosci., vol. 28, pp. 13592–13608, 2008.

[15] Y. Loewenstein, A. Kuras, and S. Rumpel,
‘‘Multiplicative dynamics underlie the
emergence of the log-normal distribution of
spine sizes in the neocortex in vivo,’’
J. Neurosci., vol. 31, pp. 9481–9488, 2011.

[16] X. J. Wang, ‘‘Probabilistic decision making by
slow reverberation in cortical circuits,’’
Neuron, vol. 36, pp. 955–968, 2002.

[17] A. Destexhe, M. Rudolph, and D. Paré, ‘‘The
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