17pS101-4 量子多体系におけるダイナミクス研究の進展: 極限宇宙の物理法則を探る

Glauber dynamics for quantum systems and its related topics

Sep. 17, 2024 Grad. Sch. of Informatics, Kyoto Univ. Kenji Harada

Real time correlation

It is difficult to calculate a dynamical evolution of a quantum state.

Dynamics: time correlation, spectral function

Frequency response

 $\int dt \ e^{itw} \langle \hat{O}(t) \hat{O}(0) \rangle$

Spectral func. A(w)

Experiments

Theory

Huge Hilbelt space $\operatorname{Size}(|\psi\rangle, \rho, H) \sim e^{\alpha V}$

Exponentially growth by a system size, V

Numerical approaches for calculation of dynamical quantities

Time correlation

- Glauber dynamics of quantum system (2023)

Spectral function

Stochastic analytical continuation (2024)

Green function

Nevanlinna analytical continuation (2021)

• Extrapolation from complex time evolution by tensor networks (2024)

Glauber dynamics of classical systems

Ex. magnetic lattice model

Static quantity:

By Markov chain Monte Carlo method,

$$\langle A \rangle \approx \frac{1}{M}_{i}$$

(Glauber, JMP, 1963)

Canonical distribution

State $S = (s_1, s_2, s_3, \cdots)$ Probability of a state $P(S) \propto e^{-\beta H(S)}$

 β : inverse tennepature, H: Hamiltonian

$$\langle A \rangle = \sum_{S} A(S) P(S)$$

 $\sum A(S(i)), S(i)$ is sampled by P(S(i))=1, M

Glauber dynamics is a Markov process in which the stational distribution is canonical.

Glauber dynamics for Ising spin model

State change

Glauber update

Conditional prob.

$$\operatorname{Prob}(s_i(t) \to s'_i) = P(s'_i | S_{\neq i})$$

Ex. Ising model

inverse temp. β Effective field $H(S) = -\left(\sum_{j} J_{ij} s_{j}\right) s_{i} + \dots \implies \operatorname{Prob}(s'_{i}) \propto e^{\beta \left[\sum_{j} J_{ij} s_{j}(t)\right] s'_{i}}$

If the temperature is high, a spin fluctuates, and if it is low, the Ising interaction stochastically determines the next spin state.

Glauber dynamics of quantum Ising model

 $H = \sum -J_{ij}\sigma_i^z\sigma_j^z - \Gamma \sum \sigma_i^x$ (i,j) $\langle \mathcal{O} \rangle = \operatorname{Tr} \left[\mathcal{O} e^{-\beta H} \right] / Z$

MCMC on a path-integral rep.

MCMC time evolution ~ real time evolution

(Hotta, Yoshida, H., PRR 2023)

Quantum critical dynamics in 2D quantum Ising model

Very close to QCP?

Dynamic susceptibility by Glauber protocol

(Hotta, Yoshida, H., PRR 2023)

Good agreement with the dielectric experiment on κ -ET2Cu2(CN)3

Dynamical correlation function from complex time evolution

 \hat{O}_1

Real time correlation

$$\begin{aligned} G^{>}_{\hat{O}_1\hat{O}_2}(t) &= -i\langle\psi_g|\hat{O}_1(t)\hat{O}_2|\psi_g\rangle \\ &= -i\langle\psi_g|\hat{O}_1|\psi(t)\rangle \end{aligned}$$

highly entangled state \otimes However,

$$|\psi(t)\rangle \equiv e^{-it\hat{H}}\hat{O}_2|\psi_g\rangle$$

Large bond dim. Is necessary.

Complex time evolution

$$(z) = e^{iz\hat{H}}\hat{O}_1 e^{-iz\hat{H}}$$

$$|\psi(t,\alpha_0)\rangle \equiv e^{-iz(t,\alpha_0)\hat{H}}\hat{O}_2|\psi_g\rangle^{-1}$$

 $\alpha_0 = 0 \rightarrow \text{real time evolution}$

 $\operatorname{Re}(z)$

 $\alpha_0 > 0$ **—** Low entangled state

Small bond dim. Is enough to represent it.

$$G^{>}_{\hat{O}_{1}\hat{O}_{2}}(t,\alpha_{0}) = -i\langle\psi_{g}|\hat{O}_{1}|\psi(t,\alpha_{0})\rangle$$
$$\bullet \quad G^{>}_{\hat{O}_{1}\hat{O}_{2}}(t) = \lim_{\alpha_{0}\to 0} G^{>}_{\hat{O}_{1}\hat{O}_{2}}(t,\alpha_{0})$$

Extrapolation

Results for a spectral function of the single impurity Anderson model

Extrapolation by Taylor expansion

Ex. single impurity Anderson model

$$\hat{H} = \hat{H}_{\text{loc}} + \hat{H}_{\text{bath}}$$
$$\hat{H}_{\text{loc}} = \epsilon_d \sum_{\sigma=\uparrow,\downarrow} \hat{n}_{d\sigma} + U \hat{n}_{d\uparrow} \hat{n}_{d\downarrow}$$
$$\hat{H}_{\text{bath}} = \sum_{\substack{b=0\\\sigma=\uparrow,\downarrow}}^{N_b-1} \epsilon_b \hat{n}_{b\sigma} + \sum_{\substack{b=0\\\sigma=\uparrow,\downarrow}}^{N_b-1} (v_b \hat{c}_{b\sigma}^{\dagger} \hat{d}_{\sigma} + \text{H.c.})$$
$$N_b = 59, U = 2D, Dt_{\text{max}} = 90$$

The complex time result reproduces the entire spectrum with small bond dimensions.

Spectral function and imaginary time correlation

Imaginary time correlation

$$\langle O^{\dagger}(\tau)O(0)\rangle = \int_{0}^{\infty} A(w)\tilde{K}(\tau,w),$$
$$O(\tau) = e^{\tau H}Oe^{-\tau H}, \quad \tilde{K}(\tau,w) = \frac{e^{-\tau w} + e^{-(\tau)}}{1 + e^{-\beta}}$$

 E_n : energy level, O : observable, inverse temperature $\beta = 1/k_B T$

$$e^{-\beta E_n} |\langle m|O|n\rangle|^2 \delta(w - [E_m - E_n])$$

Average by canonical ensemble

$$e^{-\beta E_m} + e^{-\beta E_n})|\langle m|O|n\rangle|^2\delta(w - [E_m - E_m)|\langle m|O|n\rangle|^2\delta(w - E_m)|\langle m|O|n\rangle|^$$

$$+e^{-\beta w})/\pi$$

We can numerically calculate imaginary time correlation.

$$(\beta - \tau)w$$

However, the inverse transformation is ill-posed.

Maximu entropy method for spectral function

Analytic continuation process by the chi-square

$$A(w) \to G^A(\tau) = \int_0^\infty dw A(w) \tilde{K}(\tau, w) \to \chi^2(\tilde{G}, G^A) = \sum_{ij} (G_i^A - \tilde{G}_i) C_{ij}^{-1} (G_j^A - G_i) C$$

Directly assume a function form (Maximum entropy method)

or a stochastic model (Stochastic analytic continuation)

Maximum entropy method (Gubernatis, et al. PRB 1991)

Minus of KL-divergence

$$E(A) = -\int_0^\infty dw A(w) \ln\left(\frac{A(w)}{D(w)}\right)$$

$$A(w) \ge 0, \int_0^\infty A(w)dw = 1$$

$$\rightarrow \min \arg_A F(A) = \chi^2(A)/2 - \alpha E(A)$$

The solution is balanced between the chi-square and KL-divergence.

Stochastic analytic continuation

(White, et al. 1991, ... Review: Shao & Sandvik, Phys. Rep. 2023)

Metropolis MC of parameters at a fictitious temperature Θ

weight
$$P(A|\tilde{G}) \propto \exp\left(-\frac{\chi^2(A)}{2\Theta}\right)$$

spectral function = average of samples

Add constraints

range of frequencies, gap structure, etc.

Demonstration of stochastic analytic continuation

A constraint is important to improve the quality of a spectral function.

(Shao & Sandvik, Phys. Rep. 2023)

Nevanlinna analytical continuation

Green function

$$\mathcal{G}(\gamma, z) = \frac{1}{Z} \sum_{m,n} \frac{|\langle m | c_{\gamma}^{\dagger} | n \rangle}{z + E_n - E_m} (e^{-\beta E_n} + e^{-\beta E_m})$$

Nevanlinna function: analytic in the open upper half-plane \mathcal{C}^+ , non-negative imaginary part into $\overline{\mathcal{C}^+}$

Modified Schur algorithm

expand all contractive functions, which are holomorphic functions mapping from $\mathcal{C}^+ \to \overline{\mathcal{D}} = \{z : |z| < 1\}$ Map from Nevanlinna functions one-to-one contractive functions $\theta(Y_i) = h(-\mathcal{G}(Y_i)) \quad \begin{array}{l} \text{invertible Möbius transform} \\ h: \overline{\mathcal{C}^+} \to \overline{\mathcal{D}}, z \to (z-i)/(z+i) \end{array}$ order Interpolation problem Free contractive function 10/ Solution $\theta(z)[z; \theta_{M+1}(z)] = \frac{a(z)\theta_{M+1}(z) + b(z)}{c(z)\theta_{M+1}(z) + d(z)}$ $50/\beta$ π/β $1/\beta$ $10/\beta$

(Fei, Yeh & Gull, PRL 2021)

- analytic in the open upper half-plane \mathcal{C}^+
- negative imaginary part into C^+
- The minus of Green function is a Nevanlinna function.

Demonstration of Nevanlinna analytical continuation

Hardy basis expansion

$$\theta_{M+1}(z) = \sum_{k=0}^{M} a_k f^k(z) + b_k [f^k(z)] *$$

Optimize

$$F[A_{\theta_{M+1}}(w)] = |1 - \int A_{\theta_{M+1}}(w)|^2 + \lambda \int A_{\theta_{M+1}}(w)^2$$

(Fei, Yeh & Gull, PRL 2021)

This method could hold the analytic structure of Green function and resolve both sharp and smooth features.

Summary: numerical approaches for dynamical quantities

Time correlation

- Glauber dynamics of quantum system C. Hotta, T. Yoshida, and K. Harada, Phys. Rev. Res. 5 (2023) 013186.
- Extrapolation from complex time evolution by tensor networks X. Cao, Y. Lu, E. M. Stoudenmire, and O. Parcollet, Phys. Rev. B **109** (2024) 235110.

Spectral function

 Stochastic analytical continuation H. Shao and A. W. Sandvik, Phys. Rep. 1003 (2023) 1.

Green function

 Nevanlinna analytical continuation J. Fei, C.-N. Yeh, and E. Gull, Phys. Rev. Lett. **126** (2021) 056402.

