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Strong desynchronizing effects of weak noise in globally coupled systems

Jun-nosuke Teramae and Yoshiki Kuramoto
Department of Physics, Graduate School of Sciences, Kyoto University, Kyoto 606-8502, Japan

~Received 19 June 2000; published 23 February 2001!

In assemblies of globally coupled dynamical units, weak noise perturbing independently the individual units
can cause anomalous dispersion in the synchronized cloud of the units in the phase space. When the noise-free
dynamics of the synchronized assembly is nonperiodic, various moments of the linear dimension of the cloud
as a function of the noise strength exhibit multiscaling properties with parameter-dependent scaling exponents.
Some numerical evidence of this peculiar behavior as well as its interpretation in terms of a multiplicative
stochastic process with small additive noise is provided. Universality of the phenomenon is also discussed.
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I. INTRODUCTION

Oscillatory behavior, periodic or nonperiodic, observa
on a macroscopic scale may often be a result of collec
synchronization of a population of micro-oscillators@1–3#.
Consider, for simplicity, a population of identical oscillato
with global coupling. Systems of globally and uniformal
coupled oscillators in fact serve as a natural model for
sephson junction arrays@4,5#, multimode lasers@6,7#, and
various biological systems such as flashing swarms of fi
flies @8–10# and pacemaker cells responsible for circad
rhythms@8#. Under suitable conditions, the whole populati
will exhibit complete synchrony when the oscillators are fr
from intrinsic or extrinsic randomness.

In practical situations, however, the oscillators would
more or less noisy or nonidentical, so that, instead of exh
iting perfect synchrony, they will be distributed in the pha
space to form a cloud of a finite extension. It seems qu
natural to expect that, as far as the noise remains sufficie
weak, the long-time average of the linear dimension of t
cloud, denoted bŷ r &, should be proportional to the nois
strength. This is actually the case when the oscillators ar
the limit cycle type. We shall find that, when the oscillato
are chaotic, in contrast, such linear dependence breaks d
under broad conditions, and is replaced by a more gen
power-law dependence. The main goal of the present pap
to explain theoretically why such peculiar behavior is po
sible for globally coupled chaotic oscillators. This will b
verified with some numerical evidence for a number of po
lation models. Our theory, which is quite similar to the o
developed earlier to explain a certain unique feature of
bulence in nonlocally coupled systems@11–15#, suggests
that the general momentŝr q& as a function of the noise
strength exhibit a simple multiscaling law. As a natural co
sequence of the same theory, similar multiscaling behavio
expected to occur even for the populations of limit cyc
oscillators provided that, apart from the random noise,
oscillators are subjected to another random force that is c
mon over the whole population. The crucial point here is t
the average motion has to be stochastic for the multisca
behavior to occur.

In Sec. II, we start with a general class of differentia
equation models for globally coupled elements with addit
noise. Then, as a specific model belonging to this class,
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study numerically a population of the chaotic Ro¨ssler oscil-
lators@16#, and show the anomaly in the size of the synch
nized cloud of the oscillators in the phase space. In Sec.
we develop a theory to explain the origin of a general scal
law including the results of Sec. II as a special case. O
theory becomes almost identical with the one developed
Ref. @12# if the effects of the external noise are replaced
the effects of spatial nonuniformity. The arguments in S
III suggest that the phenomenon of concern should be
universal that a number of restrictions imposed on our mo
could be removed. We provide some evidence for this
Sec. V, where three different types of population model w
be discussed. The final section summarizes our main con
sions.

II. MODEL AND NUMERICAL SIMULATION

Consider a population ofN identical units with the intrin-
sic dynamics given byẊ5F(X), where N is an arbitrary
number. Typically, the dynamical units considered are c
otic oscillators. Introducing all-to-all type linear couplin
and also external additive noise driving the oscillators in
vidually, we have the following system of coupled differe
tial equations:

dXi

dt
5F~Xi !1K•@X̄~ t !2Xi~ t !#1 f •hi~ t ! ~ i 51, . . . ,N!.

~2.1!

Here X̄ is the simple average ofXi over the population, i.e.

X̄~ t ![
1

N (
i 51

N

Xi~ t !, ~2.2!

andK is a positive coupling constant, thus working in fav
of synchronous behavior of the population;hi(t) represents
the external noise with suitably normalized intensity appl
independently on the oscillators, so that the coefficienf
measures the intensity of the noise. For the sake of simp
ity, the coupling term has been arranged so that the dynam
of a given unit that is in perfect synchrony with the avera
motion would be identical with its own dynamics withou
©2001 The American Physical Society10-1
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JUN-NOSUKE TERAMAE AND YOSHIKI KURAMOTO PHYSICAL REVIEW E63 036210
coupling. The coupling strengthK may be generalized to
coupling matrix, without qualitatively affecting the whol
arguments that follow.

In the absence of noise, the population will be attracted
a perfectly synchronized motion for sufficiently largeK. In
the one-oscillator phase space, the dynamics could the
imagined as an evolution of a single point. When a sm
random noise is introduced, the resulting dynamics can
longer be represented by a point in the phase space. Ins
we have a cloud of a finite extension whose shape will
changing variously in time. The effects of noise on the c
lective dynamics could conveniently be characterized by
average linear dimension of the oscillator cloud in the ph
space defined by

r ~ t ![
1

N (
i 51

N

uX̄~ t !2Xi~ t !u. ~2.3!

We define its various moments by a long-time average
^r q&:

^r q&[ lim
T→`

1

TE0

T

r q~ t !dt. ~2.4!

Our main concern below is the dependence of^r q& on f, K,
andq. Our intuition may tell that̂ r q& will simply be propor-
tional to f q, which seemed to be true from some numeri
simulation@17#. However, we see below that this is not a
ways valid. Instead,̂r q& behaves under broad conditions lik

^r q&} f a(q) ~2.5!

for sufficiently smallf, where the exponenta(q) is not linear
in q and also changes continuously withK and other system
parameters.

The above power-law dependence can be confirmed
numerical analysis of globally coupled Ro¨ssler oscillators in
the chaotic regime. By assuming the coupling matrix to
diagonal, the system is governed by the equations

Ẋi52~Yi1Zi !1K~X̄2Xi !1 f h i ,X ,

Ẏi5Xi1aYi1K~Ȳ2Yi !1 f h i ,Y , ~2.6!

Żi5b2cZi1XiZi1K~ Z̄2Zi !1 f h i ,Z ,

where the noise componentsh i ,n (n5X,Y,Z) are assumed
to be mutually independent and white Gaussian with van
ing mean and unit variance. We will choose the stand
parameter valuesa50.3, b50.2, andc55.7. It turns out
that in the absence of noise, the state of perfect synchron
stable above some critical valueKc of K, whereKc.0.4. We
will work with this condition throughout, and concentrate o
the size of the oscillator cloud when the noise sets in. So
numerical results for the first moment^r & are summarized in
Figs. 1 and 2. In Fig. 1, log-log plots of̂r & versusf are
displayed for different values ofK. The power-law behavior
as given by Eq.~2.5! with q51 seems to hold well with the
exponenta(1) changing withK. Figure 2 shows the depen
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dence of the estimated values ofa(1) on K. For sufficiently
strong coupling, the exponent saturates to the normal va
a(1)51, while for weaker couplinga(1) varies between 0
and 1. Since the noise is sufficiently small, the value ofa(1)
less than 1 implies anomalous amplification in the size of
oscillator cloud as compared with the normal case.

III. ORIGIN OF ANOMALOUS FLUCTUATIONS

In this section, we present a theory on the origin
anomalous size fluctuations of a synchronized cluster fo
numerically in the preceding section. Our theory can be
veloped quite in parallel with the theory developed before
the multiscaled turbulence in nonlocally coupled syste
@11–15#. Let us start with Eq.~2.1!. Note that the average
motion of the population obeys the equation

FIG. 1. log10̂ r & vs log10f calculated numerically from Eq.~2.6!
with N564 for several values ofK. The top line corresponds to
K50.142 and the bottom one toK50.170, with the uniform inter-
val of 0.004.

FIG. 2. Exponenta(1) vs coupling strengthK, obtained from
the data of Fig. 1 using the method of least-squares.
0-2
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dX̄

dt
5F~X̄!1OS 1

N (
i 51

N

uXi2X̄u2D . ~3.1!

Thus, the deviation defined byxi(t)[Xi(t)2X̄(t) is gov-
erned by

dxi

dt
5@DF„X̄~ t !…2K#xi1 f h i~ t !1O~ uxi u2!, ~3.2!

where DF„X̄(t)… is the Jacobian ofF(X) at X5X̄(t). For
sufficiently larget, the vectorxi(t) is expected to becom
parallel with the Lyapunov eigenvector ofDF„X̄(t)…2K cor-
responding to the largest Lyapunov eigenvalue. By deno
the amplitude of this eigencomponent ofxi(t) asxi(t), and
dropping the suffixi for the sake of simplicity, Eq.~3.2! is
reduced to a scalar equation

dx

dt
5l~ t !x1 f h~ t !1O~x2!, ~3.3!

wherel(t) is the local Lyapunov exponent, andh i(t) is the
projection ofhi(t) onto the corresponding Lyapunov eige
vector. For the coupled Ro¨ssler oscillators given by Eq
~2.6!, we have

l~ t !5l r~ t !2K, ~3.4!

wherel r(t) is the local Lyapunov exponent of the individu
Rössler oscillator. Since the sign of the long-time average
l(t), which will be denoted byl0, determines the stability
of the perfect synchrony of the population in the absence
noise, the critical coupling strength for the coupled Ro¨ssler
oscillators is simply given byKc5l0.

Since we are working with the condition that the lon
time average ofl(t) is negative, and also with sufficientl
weak noise, there should exits a range ofx where the non-
linear term ofO(x2) as well as the noise termf h(t) are
negligible. Let this range be specified byxmin!x!xmax,
wherexmin should be proportional tof. In this range, we have
a linear multiplicative stochastic equation

dx

dt
5l~ t !x. ~3.5!

Note that the stochasticity here is of a deterministic orig
The stationary distribution from Eq.~3.5! can be discussed
analytically in the following way. Introducing a new variab
y by

y5 lnuxu, ~3.6!

we rewrite Eq.~3.5! as

dy

dt
5l~ t !. ~3.7!

This is integrated to give
03621
g

f
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y~ t !2y~0!5E
0

t

l~ t !dt[L~ t !. ~3.8!

The time-dependent probability distribution function~PDF!
of y, denoted byQ(y,t), satisfies

Q~y,t !5E
2`

`

v~L,t !Q~y2L,0!dL, ~3.9!

wherev(L,t) is the PDF ofL(t) and is equivalent to the
transition probability between the states at times 0 ant.
From the definition ofL, v(L,t) is expected to converge t
a Gaussian of meant(l02K) @5t(Kc2K)# and variance
tDl as t→`, where

Dl5 lim
T→`

1

T K H E
0

T

@l~ t !2l0#dtJ 2L . ~3.10!

Thus, the stationary PDF ofy becomes

Q~y!}e2bt, ~3.11!

where

b5
2l0

Dl
~.0!. ~3.12!

Note that for the coupled Ro¨ssler oscillators,b is given by

b5
2~K2Kc!

Dl
. ~3.13!

The stationary PDF for the original variablex, denoted by
P(x), must satisfy the relation 2P(x)dx5Q(y)dy. Thus,
from Eq. ~3.11!, we obtain

P~x!}x2(b11) ~xmin!x!xmax!. ~3.14!

Coming back to the original stochastic equation~3.3!, the
effects of additive noise and nonlinearity must now be inc
porated. There exists a characteristic value ofx below which
the additive noise term dominates the other terms. This va
is what we denoted byxmin . For x!xmin , the power-law
divergence ofP(x) will be saturated to a constant. On th
other hand, there exists the second characteristic valuex,
denoted byxmax, above which the nonlinear term is the mo
dominant. If the nature of the nonlinearity is such that
decelerates rather than accelerates the growth ofx, which we
assume, the power-law decay ofP(x) will be replaced by a
much sharper decay abovexmax. As far as their dependenc
on f is concerned,xmin andxmax may be specified as

xmin5 f , ~3.15!

xmax51. ~3.16!

Thus, the entire profile ofP(x) will be such that it is nearly
constant belowx5xmin , obeys the above-mentioned pow
law, and decays quickly abovex5xmax. On further idealiza-
tion, we representP(x) by the analytic form
0-3
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P~x!5H C f2(b11) ~0,x, f !

Cx2(b11) ~ f ,x,1!

0 ~1,x!,

~3.17!

whereC is a normalization constant.
Figures 3 and 4 show log-log plots ofP(j) for the devia-

tion j of the first componentX obtained numerically from
the coupled Ro¨ssler oscillators@Eq. ~2.6!# for some values of
f andK. It is seen that each curve is approximately compo
of three parts corresponding to the three characteristic
gimes in Eq.~3.17!. The range ofj where P(j) is nearly
constant extends proportionally tof, which is consistent with
Eq. ~3.17!, while the sharp drop ofP(j) seems to occur a
somej independent off, which is again consistent with Eq
~3.17! with x replaced byj.

FIG. 3. Stationary PDFs ofP(j) calculated numerically from
Eq. ~2.6! for several values of noise strengthf, whereK50.16 is
fixed. The curves correspond tof 51021 ~lowest level at lowerj),
1021.25, 1021.5, 1021.75, 1022.00, and 1022.25 ~highest!.

FIG. 4. Stationary PDFsP(j) calculated numerically from Eq
~2.6! for several values of coupling strengthK, where f 50.01 is
fixed. The curves correspond toK50.150 ~slowest decay!, 0.155,
0.160, 0.165, 0.170, 0.175, and 0.185~fastest decay!.
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Up to this point, we have discussed the statistics of
deviationx of a single element from the mean motion of th
population. In what follows, we will identify the statistics o
uxu with that of r, i.e., the deviation averaged over the who
population. As far as some qualitative features such as
power-law dependence of^r & on f are concerned, this as
sumption seems to be justified because the dynamical u
are driven by a common multiplierl(t) by virtue of the
global nature of the coupling.

By using Eq.~3.17!, it is thus straightforward to calculat
various moments ofr. As for the first moment, we have

^r &.E
2`

`

uxuP~x!dx}H f b ~0,b,1!

f 1 ~b.1!.
~3.18!

Comparing the above equation with the expression in
~3.13! for the coupled Ro¨ssler oscillators, one may now un
derstand the reason for the observed anomalous power
dependence of̂r & on the external noise when the system
not too far from the critical pointK5Kc .

The observed change in the scaling exponent withK
shown in Fig. 2 still deviates considerably from Eq.~3.18!
with b given by Eq.~3.13!. Specifically, the numerical re
sults do not exhibit sharp changes nearb50 andb51. Such
discrepancy seems to be due to the fact that the rang
validity of Eq. ~3.18! in terms of f shrinks to zero asb
approaches 0 or 1. A little more careful analysis shows t
under fixed f, we have ^r &;1/u ln fu as b→0 and ^r &
;u f bln fu asb→1.

Similar calculations for the higher moments^r q& are also
straightforward, and the results are simply given by

^r q&}H f b ~0,b,q!

f q ~b.q!,
~3.19!

except for the weak logarithmic singularity mentione
above. Thus, the anomalous fluctuations could be vis
through higher moments in the range of stronger coupl
where no anomaly is visible through lower moments. S
cifically, for the coupled Ro¨ssler oscillators, the range ofK
where theqth moment behaves anomalously is given by

Kc,K,Kc1
qDl

2
. ~3.20!

Near the critical point at which the average Lyapun
exponent vanishes, Eq.~3.3! is of the same form as the equa
tion employed for discussing the so-calledon-off intermit-
tency@18–21# with noise@22,23#. Since the dynamics ofr (t)
would qualitatively be the same as that ofx(t) of a represen-
tative oscillator, this implies that noisy on-off intermittenc
could also be observed inr (t). This was confirmed numeri
cally for the coupled Ro¨ssler oscillators, though we will no
report its details. The only thing to be remarked is that
origins of the power law in the on-off intermittency and th
of our present concern are completely independent.
0-4
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IV. UNIVERSALITY OF ANOMALOUS FLUCTUATIONS

Up to the preceding section, our discussion has b
based on the following three assumptions:~i! The system is
described by a set of ordinary differential equations;~ii ! the
source of randomness working against complete synchr
is represented by external additive noise;~iii ! the constitu-
ents of the population are intrinsically chaotic. In what fo
lows, we will show that neither of these assumptions is n
essary, which implies that the anomalous behavior
concern would be quite general.

A. Case of globally coupled maps

The discrete-time analog to Eq.~2.1! is the system of
globally coupled maps@24,25# with noise. Assuming for the
sake of simplicity that the individual map is one
dimensional, we are concerned with the model equation
the form

Xi~n11!5~12K !M „Xi~n!…1KM „X~n!̄…1 f h i

~ i 51, . . . ,N!. ~4.1!

One may develop arguments similar to the case
continuous-time dynamics, and derive a discretized vers
of Eq. ~3.3!:

xn115elnxn1 f hn1O~xn
2!. ~4.2!

Furthermore, the arguments leading to a stationary P
similar to the form of Eq.~3.17! are almost the same a
before. As an example, let us consider a generalized tent
for M (x) defined by

M ~x!5H x/a ~0<x<a!

~12x!/~12a! ~a<x<1!.
~4.3!

The crucial condition for the occurrence of an anomaly
^r & is that the local Lyapunov exponent in Eq.~4.2! fluctu-
ates between positive and negative values. Thus, the con
tional tent map (a50.5) for which l5 ln 2 identically is
ruled out. In a suitable range ofa andK, the system given by
Eq. ~4.1! is confirmed to exhibit power-law fluctuations i
the form of Eq.~3.18!. The estimated exponenta(1) of the
first moment ofr as a function ofK is displayed in Fig. 5.

B. Effects of heterogeneity

Any kind of heterogeneity present in the population cou
give a source of incompleteness in synchrony. We focus
the following inhomogeneous system of elementswithout
additive noise:

dXi

dt
5F~Xi ,ai !1K•@X̄~ t !2Xi~ t !#. ~4.4!

Here the heterogeneity is represented by a weak distribu
in a parametera, its value for thei th element being denote
by ai . The dynamics of the deviationx of a representative
oscillator is described by
03621
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dx

dt
5@DF„X̄~ t !,ā…2K#x1da•

]F„X̄~ t !,ā…

]a
1O~ uxu2,da2!,

~4.5!

where the suffixi is dropped andda denotes the deviation o

a from its population averageā. The effect of the second
term on the right-hand side is essentially the same as tha
the additive noise in Eq.~3.2!, thus resulting in the anoma
lous power-law dependence of^r q& on the strength of inho-
mogeneity.

C. Populations of nonchaotic units

We have seen that the anomalous fluctuations exhib
by the synchronized cluster can arise only if the loc
Lyapunov exponent associated with the individual unit flu
tuates randomly. This means that we can never expect s
an anomaly for populations ofnonchaoticdynamical units.
Even for this class of systems, however, the anomalous fl
tuations may arise provided the whole population is driv
externally by a common random force apart from the rand
noise considered previously. The system of this class
take the form

dXi

dt
5F~Xi !1K•@X̄~ t !2Xi~ t !#1G~ t !1 f •hi~ t !,

~4.6!

where the individual dynamicsẊ5F(X) is assumed to be
nonchaotic andG(t) represents the coherent random for
independent ofi. By virtue of the G(t) term, the local
Lyapunov exponent now fluctuates randomly, so that
anomalous fluctuation inr could be recovered. This can b
demonstrated with a population of oscillatory/excitable un
of the FitzHugh-Nagumo type@26,27#. The specific form of
the model is given by

FIG. 5. Exponenta(1) vs coupling strengthK calculated nu-
merically from the generalized tent map@Eq. ~4.3!# with a50.75.
0-5
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dXi

dt
5

1

e
~Xi2Xi

32Yi !1K~X̄2Xi !1G0sinf~ t !1 f h i ,X~ t !,

dYi

dt
5aXi1b1K~Ȳ2Yi !1 f h i ,Y~ t !, ~4.7!

where G0sinf(t) represents external random force withf
generated from the dynamics of a random walker:

d2f

dt2
52g

df

dt
1gh. ~4.8!

Some numerical results of the above model are sho
in Figs. 6 and 7, where the parameter values are cho
such that the individual unit is nonoscillatory but excitab
A nontrivial power-law dependence of̂r & on f with a
parameter-dependent exponent is again confirmed. Sim

FIG. 6. loĝ r& vs log f for several values ofK, from 0.01(top) to
0.19(bottom) with the uniform increment of 0.002, calculated n
merically from Eqs. ~4.7! and ~4.8!; N564, (a,b,e)
5(1.0,0.58,0.1), (G0 ,g,g)5(0.5,1.0,5.0).
ce

et

ys
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behavior of^r & of course persists when the individual d
namics becomes oscillatory.

V. SUMMARY

In the present paper, we argued that in globally coup
systems of nonlinear dynamical units, small noise or i
posed heterogeneities can generally cause anomalo
strong dispersion of the synchronized clusters in the ph
space. This was demonstrated numerically with a numbe
population models with chaotic dynamical units. The n
merical results were explained theoretically in terms o
multiplicative stochastic process with additive noise.
turned out that the crucial condition for the occurrence
such an anomaly is the random fluctuations of the lo
Lyapunov exponent associated with the individual un
This fact suggested some possible generalizations of
class of systems capable of exhibiting similar behavior.
particular, the chaotic nature of the individual dynami
seemed unnecessary provided the population is subjecte
a common random drive, and this was actually demonstra
with the population of the FitzHugh-Nagumo-type excitab
units.

-

FIG. 7. Exponenta(1) vs coupling strengthK obtained from
the data of Fig. 6 using the method of least-squares.
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