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Strong desynchronizing effects of weak noise in globally coupled systems
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In assemblies of globally coupled dynamical units, weak noise perturbing independently the individual units
can cause anomalous dispersion in the synchronized cloud of the units in the phase space. When the noise-free
dynamics of the synchronized assembly is nonperiodic, various moments of the linear dimension of the cloud
as a function of the noise strength exhibit multiscaling properties with parameter-dependent scaling exponents.
Some numerical evidence of this peculiar behavior as well as its interpretation in terms of a multiplicative
stochastic process with small additive noise is provided. Universality of the phenomenon is also discussed.
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[. INTRODUCTION study numerically a population of the chaotic $2ter oscil-
lators[16], and show the anomaly in the size of the synchro-
Oscillatory behavior, periodic or nonperiodic, observablenized cloud of the oscillators in the phase space. In Sec. Il
on a macroscopic scale may often be a result of collectivéve develop a theory to explain the origin of a general scaling
synchronization of a population of micro-oscillatdrs-3].  law including the results of Sec. Il as a special case. Our
Consider, for simplicity, a population of identical oscillators theory becomes almost identical with the one developed in
with g|0ba| Coup]ing_ Systems of g|oba||y and uniforma”y Ref. [12] if the effects of the external noise are replaced by
coupled oscillators in fact serve as a natural model for Jothe effects of spatial nonuniformity. The arguments in Sec.
sephson junction array,5], multimode laserg6,7], and Il suggest that the phenomenon of concern should be so
various biological systems such as flashing swarms of fireuniversal that a number of restrictions imposed on our model
flies [8—10] and pacemaker cells responsible for circadiancould be removed. We provide some evidence for this in
rhythms[8]. Under suitable conditions, the whole population Sec. V, where three different types of population model will
will exhibit complete synchrony when the oscillators are freebe discussed. The final section summarizes our main conclu-
from intrinsic or extrinsic randomness. sions.
In practical situations, however, the oscillators would be
more or less noisy or nonident!cal, so th.at, instgad of exhib- Il. MODEL AND NUMERICAL SIMULATION
iting perfect synchrony, they will be distributed in the phase
space to form a cloud of a finite extension. It seems quite Consider a population dfl identical units with the intrin-
natural to expect that, as far as the noise remains sufficientlgic dynamics given byXx=F(X), whereN is an arbitrary
weak, the long-time average of the linear dimension of thisnumber. Typically, the dynamical units considered are cha-
cloud, denoted byr), should be proportional to the noise otic oscillators. Introducing all-to-all type linear coupling
strength. This is actually the case when the oscillators are aind also external additive noise driving the oscillators indi-
the limit cycle type. We shall find that, when the oscillatorsvidually, we have the following system of coupled differen-
are chaotic, in contrast, such linear dependence breaks dowal equations:
under broad conditions, and is replaced by a more general
power-law dependence. The main goal of the present paper |a
to explain theoretically why such peculiar behavior is pos- ——F(X )+K- [X( ) =Xi(O)]+f-p(t) (i=1,...N).
sible for globally coupled chaotic oscillators. This will be dt 2.1
verified with some numerical evidence for a number of popu- :
lation models. Our theory, which is quite similar to the one
developed earlier to explain a certain unique feature of turHere X is the simple average of; over the population, i.e.,
bulence in nonlocally coupled systemh$1-15, suggests
that the general momeni{s ) as a function of the noise o
strength exhibit a simple multiscaling law. As a natural con- X(t)=
sequence of the same theory, similar multiscaling behavior is
expected to occur even for the populations of limit cycle
oscillators provided that, apart from the random noise, thendK is a positive coupling constant, thus working in favor
oscillators are subjected to another random force that is conof synchronous behavior of the populatiop(t) represents
mon over the whole population. The crucial point here is thathe external noise with suitably normalized intensity applied
the average motion has to be stochastic for the multiscalinqhidependently on the oscillators, so that the coefficient
behavior to occur. measures the intensity of the noise. For the sake of simplic-
In Sec. Il, we start with a general class of differential- ity, the coupling term has been arranged so that the dynamics
equation models for globally coupled elements with additiveof a given unit that is in perfect synchrony with the average
noise. Then, as a specific model belonging to this class, wmotion would be identical with its own dynamics without

N
; Xi(t), (2.2
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coupling. The coupling strength may be generalized to a 0 - - - -
coupling matrix, without qualitatively affecting the whole
arguments that follow.

In the absence of noise, the population will be attracted to
a perfectly synchronized motion for sufficiently large In
the one-oscillator phase space, the dynamics could then be
imagined as an evolution of a single point. When a small
random noise is introduced, the resulting dynamics can no
longer be represented by a point in the phase space. Instead,
we have a cloud of a finite extension whose shape will be
changing variously in time. The effects of noise on the col-
lective dynamics could conveniently be characterized by the
average linear dimension of the oscillator cloud in the phase
space defined by

logio(<r>)

_25 ! 1 1 1
1 N -3 -2.6 -2.2 -1.8 -1.4
r)=g 2 XO=X()l. 2.3 logio(f)

i=1

N . . FIG. 1. log(r) vs log,f calculated numerically from Eq2.6)
We define its various moments by a long-time average 0Bvith N=64 for several values oK. The top line corresponds to

(ro): K=0.142 and the bottom one #=0.170, with the uniform inter-
val of 0.004.
1 (T
(r%=lim TJ' ra(t)dt. (2.9

el Jo . .
T dence of the estimated values®f1) onK. For sufficiently

Our main concern below is the dependencérdj onf, K,  Strong coupling, the exponent saturates to the normal value
andg. Our intuition may tell thatr) will simply be propor- ~ @(1)=1, while for weaker coupling¢(1) varies between 0
tional to f9, which seemed to be true from some numerical@nd 1. Since the noise is sufficiently small, the value(f)
simulation[17]. However, we see below that this is not al- 1ess than 1 implies anomalous amplification in the size of the
ways valid. Insteadr9) behaves under broad conditions like 0Scillator cloud as compared with the normal case.

<rq>o<fa(q) (2.5
I1l. ORIGIN OF ANOMALOUS FLUCTUATIONS

for sufficiently smallf, where the exponeni(q) is not linear
in g and also changes continuously wkhand other system  In this section, we present a theory on the origin of
parameters. anomalous size fluctuations of a synchronized cluster found

The above power-law dependence can be confirmed by @umerically in the preceding section. Our theory can be de-
numerical analysis of globally coupled &der oscillators in ~ veloped quite in parallel with the theory developed before on
the chaotic regime. By assuming the coupling matrix to bethe multiscaled turbulence in nonlocally coupled systems
diagonal, the system is governed by the equations [11-15. Let us start with Eq(2.1). Note that the average

motion of the population obeys the equation

Xi=—(Yi+Z)+K(X=X)+ 7 x,

-Yi:Xi+aYi+K(V_Yi)+f77i,Y’ (26)

Zi:b_CZi+Xizi+K(Z_Zi)+f’?i,z,

(1)

o O O o o O O o o

where the noise componenis , (v=2X,Y,Z) are assumed

to be mutually independent and white Gaussian with vanish-z::
ing mean and unit variance. We will choose the standardg
parameter valuea=0.3, b=0.2, andc=5.7. It turns out &
that in the absence of noise, the state of perfect synchrony i:®
stable above some critical valig of K, whereK.=0.4. We

will work with this condition throughout, and concentrate on
the size of the oscillator cloud when the noise sets in. Some . . . . . .
numerical results for the first momefit) are summarized in ""0.14 0.15 0.16 0.17 0.18 0.19
Figs. 1 and 2. In Fig. 1, log-log plots dfr) versusf are
displayed for different values d€. The power-law behavior
as given by Eq(2.5 with q=1 seems to hold well with the FIG. 2. Exponentx(1) vs coupling strengttiK, obtained from
exponenta(1) changing withK. Figure 2 shows the depen- the data of Fig. 1 using the method of least-squares.

N W 1Yy N 0w B

=

coupling strength K
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X
=F(X)+O

1 N
n —2}1 IXi—X|?]. (3.1

Thus, the deviation defined b&;(t)zxi(t)—f(t) is gov-
erned by

dXi —
Gt ~[DFX(t) = KIxi+ () +O(|xi[*), (3.2

where DF(X(t)) is the Jacobian of(X) at X=X(t). For
sufficiently larget, the vectorx;(t) is expected to become

parallel with the Lyapunov eigenvector DF(Y(t))— K cor-

PHYSICAL REVIEW & 036210

t
y(t)—y(0)= Joh(t)thA(t)- (3.8

The time-dependent probability distribution functiédDP
of y, denoted byQ(y,t), satisfies

)

Q)= f w(ADQY-A0dA, (39

wherew(A,t) is the PDF ofA(t) and is equivalent to the
transition probability between the states at times O &nd
From the definition of\, w(A,t) is expected to converge to
a Gaussian of meat{Ay—K) [=t(K.—K)] and variance

responding to the largest Lyapunov eigenvalue. By denotin§D» ast—2, where

the amplitude of this eigencomponentxft) asx;(t), and
dropping the suffix for the sake of simplicity, Eq(3.2) is
reduced to a scalar equation

X_ 2
a—)\(t)x+f77(t)+0(x ),

(3.3
where(t) is the local Lyapunov exponent, angl(t) is the
projection of#;(t) onto the corresponding Lyapunov eigen-
vector. For the coupled Rsler oscillators given by Eg.
(2.6), we have

Nt)=N (1)—K, (3.9

where\,(t) is the local Lyapunov exponent of the individual

Rossler oscillator. Since the sign of the long-time average of

A (t), which will be denoted by, determines the stability

1 T 2
D,=lim= f [N(T)—Npldt} ). (3.10
Tl 0
Thus, the stationary PDF gfbecomes
Q(y)xe #, (3.1)
where
2\
A

Note that for the coupled Rsler oscillatorsg is given by

2(K—K,)
g=—<

D, (3.13

of the perfect synchrony of the population in the absence offhe stationary PDF for the original variabke denoted by

noise, the critical coupling strength for the coupledsBler
oscillators is simply given bK.=\.

Since we are working with the condition that the long-
time average oh (t) is negative, and also with sufficiently
weak noise, there should exits a rangexofhere the non-
linear term of O(x?) as well as the noise terriiy(t) are
negligible. Let this range be specified byn<X<Xmax
wherex,i, should be proportional tb In this range, we have
a linear multiplicative stochastic equation

T =N(t)X.

(3.9

Note that the stochasticity here is of a deterministic origin
The stationary distribution from Ed3.5 can be discussed
analytically in the following way. Introducing a new variable

y by

y=In|x]|, (3.6
we rewrite Eq.(3.5) as

dy

a—)\(t). (3.7

This is integrated to give

P(x), must satisfy the relation R(x)dx=Q(y)dy. Thus,
from Eq. (3.11), we obtain

P(Xx)oex™ BT (X in<X<Xma)- (3.19
Coming back to the original stochastic equati@3), the
effects of additive noise and nonlinearity must now be incor-
porated. There exists a characteristic valua b&low which

the additive noise term dominates the other terms. This value
is what we denoted by.,. For Xx<Xm,, the power-law
divergence ofP(x) will be saturated to a constant. On the
other hand, there exists the second characteristic value of
denoted by .4, @above which the nonlinear term is the most

dominant. If the nature of the nonlinearity is such that it

‘decelerates rather than accelerates the growthwhich we

assume, the power-law decay Bfx) will be replaced by a
much sharper decay abowg,,. As far as their dependence
onf is concernedy,, andX,., may be specified as

(3.19
(3.16

Thus, the entire profile oP(x) will be such that it is nearly
constant belowk=Xx,,, obeys the above-mentioned power
law, and decays quickly above= X,,. On further idealiza-
tion, we represenP(x) by the analytic form

Xmin= T,

Xmax=1.
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100 Up to this point, we have discussed the statistics of the
10 deviationx of a single element from the mean motion of the
population. In what follows, we will identify the statistics of
1 |x| with that ofr, i.e., the deviation averaged over the whole
0.1 population. As far as some qualitative features such as the
o0l power-law dependence df) on f are concerned, this as-
<X ' sumption seems to be justified because the dynamical units
% 0.001 are driven by a common multipliex(t) by virtue of the
0.0001 global nature of the coupling.
By using Eq.(3.17), it is thus straightforward to calculate
1e-05 various moments of. As for the first moment, we have
le-06 F 1
le-07 : : - % ff (0<B<1)
0.001 0.01 0.1 1 10 (r) fOCIXIP(X)dX“[fl (B>1). (3.18

g

FIG. 3. Stationary PDFs oP(¢) calculated numerically from  Comparing the above equation with the expression in Eg.
Eq. (2.6) for several values of noise strengthwhereK=0.16 is  (3.13) for the coupled Rssler oscillators, one may now un-
fixed. The curves correspond fe=10"* (lowest level at loweg),  derstand the reason for the observed anomalous power-law

1072, 1075, 107175 1072%, and 10%%° (highes}. dependence ofr) on the external noise when the system is
not too far from the critical poinK=K,.
cf- (Bt  (p<x<f) The observed change in the scaling exponent with

_ shown in Fig. 2 still deviates considerably from H§.18
P(x)=1 Cx B (f<x<1) 317 with B given by Eq.(3.13. Specifically, the numerical re-
0 (1<x), sults do not exhibit sharp changes ngar0 andB=1. Such
discrepancy seems to be due to the fact that the range of
) o validity of Eq. (3.18 in terms of f shrinks to zero a3
whereC is a normalization constant. _ approaches 0 or 1. A little more careful analysis shows that
Figures 3 and 4 show log-log plots B{£) for the devia- | nger fixed f, we have (r)~1/inf| as B—0 and (r)
tion & of the._first componenkX obtained numerically from ~|fPInf| asf—1.
the coupled Rssler oscillator$Eq. (2.6)] for some values of Similar calculations for the higher momer(ts!) are also

fandK. It is seen that each_curve is approximately Comp_ose‘gtraightforward, and the results are simply given by
of three parts corresponding to the three characteristic re-

gimes in Eq.(3.17. The range of¢é where P(£) is nearly s

constant extends proportionally towhich is consistent with (1o f7 (0<p<q) (3.19
Eq. (3.17), while the sharp drop oP(¢) seems to occur at fa (B>q), '
some¢ independent of, which is again consistent with Eq.

(3.17 with x replaced by¢. except for the weak logarithmic singularity mentioned

above. Thus, the anomalous fluctuations could be visible

100 . . - through higher moments in the range of stronger coupling
10 | ] where no anomaly is visible through lower moments. Spe-
cifically, for the coupled Rssler oscillators, the range &f
1r ] where theqth moment behaves anomalously is given by
0.1F ]
g 00r ] K <K<K+ by (3.20
& 0.001F y 2
0.0001 [ 1 . . .

Near the critical point at which the average Lyapunov
1e-05 | 7 exponent vanishes, E(B.3) is of the same form as the equa-
1e-06 [ ] tion employed for discussing the so-called-off intermit-

. . . tency[18-21 with noise[22,23. Since the dynamics of(t)
1e_007 001 0.01 0.1 1 10 would qualitatively be the same as thatxgf) of a represen-
' ' & tative oscillator, this implies that noisy on-off intermittency

could also be observed ir(t). This was confirmed numeri-

FIG. 4. Stationary PDF®(£) calculated numerically from Eq. cally for the coupled Rssler oscillators, though we will not
(2.6) for several values of coupling strengkhy wheref=0.01 is  report its details. The only thing to be remarked is that the
fixed. The curves correspond K=0.150 (slowest decay 0.155,  origins of the power law in the on-off intermittency and that
0.160, 0.165, 0.170, 0.175, and 0.1@astest decay of our present concern are completely independent.
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IV. UNIVERSALITY OF ANOMALOUS FLUCTUATIONS

Up to the preceding section, our discussion has beer
based on the following three assumptiofi:The system is
described by a set of ordinary differential equatiofi9;the
source of randomness working against complete synchron
is represented by external additive noi¢i@;) the constitu-
ents of the population are intrinsically chaotic. In what fol-
lows, we will show that neither of these assumptions is nec-§
essary, which implies that the anomalous behavior of® 0.2
concern would be quite general.

onent o(l)
o o
o ©

(]
=Y

A. Case of globally coupled maps . . . L L L
0.44 0.46 0.48 0.5 0.52 0.54 0.56

coupling strength K

The discrete-time analog to E@2.1) is the system of
globally coupled map§g24,25 with noise. Assuming for the
sake of simplicity that the individual map is one- g 5 Exponenta(1) vs coupling strengtiK calculated nu-
dimensional, we are concerned with the model equation Ofnerically from the generalized tent még. (4.3] with a=0.75.
the form

Xi(n+1)=(1=K)M (X (n)+ KM (X(n) + 9 or (0 @Kt oo L0250,

(i=1,...N). 4.7) (4.9

One may develop arguments similar to the case of

g?rganlgglgﬁjtlme dynamics, and derive a discretized VEISIO here the suffi is dropped anda denotes the deviation of

a from its population averaga. The effect of the second
Xn+1=e€"x,+ f 7+ O(X2). (4.2  term on the right-hand side is essentially the same as that of
the additive noise in Eq3.2), thus resulting in the anoma-
Furthermore, the arguments leading to a stationary PDlpus power-law dependence ¢f) on the strength of inho-
similar to the form of Eq.(3.17) are almost the same as mogeneity.
before. As an example, let us consider a generalized tent map
for M(x) defined by

IF(X(t),a)
Jda

C. Populations of nonchaotic units

x/a (0=x=a)

(4.3 We have seen that the anomalous fluctuations exhibited
(1=x)/(1-a) (asx<1). by the synchronized cluster can arise only if the local
The crucial condition for the occurrence of an anomaly ofLyapunov exponent .associated with the individual unit fluc-
(r) is that the local Lyapunov exponent in E@.2) fluctu- tuates randomly. This means that we can never expect such

ates between positive and negative values. Thus, the convefi! @homaly for populations afonchaoticdynamical units.
tional tent map 4=0.5) for which \=In2 identically is Even for this class of systems, however, the anomalous fluc-

ruled out. In a suitable range afandK, the system given by tuations may arise provided the whole population is driven
Eq. (4.1) is confirmed to exhibit power-law fluctuations in €Xtérnally by a common random force apart from the random

the form of Eq.(3.18. The estimated exponent{1) of the noise considered previously. The system of this class will
first moment ofr as a function oK is displayed in Fig. 5.  t@ke the form

M (x)=

B. Effects of heterogeneity dX; —
: . : : ot - P HKIXM =X ]+ GO + - (1),
Any kind of heterogeneity present in the population could
give a source of incompleteness in synchrony. We focus on (4.6

the following inhomogeneous system of elemewnitishout
additive noise:

dX; _
St~ FXa)+K-[X(M) =X(0)]. (4.9

where the individual dynamiciX=F(X) is assumed to be
nonchaotic ands(t) represents the coherent random force
independent ofi. By virtue of the G(t) term, the local
Lyapunov exponent now fluctuates randomly, so that the
Here the heterogeneity is represented by a weak distributioanomalous fluctuation in could be recovered. This can be
in a parametes, its value for theith element being denoted demonstrated with a population of oscillatory/excitable units
by a;. The dynamics of the deviation of a representative of the FitzHugh-Nagumo typf26,27. The specific form of
oscillator is described by the model is given by
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-0.8 T T T 0.75
-1t 0.7 i
0.65 J
-1.2 -
/ 5 0.6 _
7! I 2 0.55 ]
U 8
g -1.6¢ 1 £ 0.5 |
b a,
o -
— -1.8FT i gj 0.45
0.4 i
_2 - 4
0.35 J
-2.2 1 0.3 ) ) ) ) ) ) ) ) )
—9.4 ) . ) 0 0.020.040.060.080.10.120.140.160.180.2
. -3 -2.6 -2.2 -1.8 coupling strength K

logio(f) FIG. 7. Exponentw(1) vs coupling strength obtained from

FIG. 6. logr) vs logf for several values ok, from 0.01(top) to the data of Fig. 6 using the method of least-squares.

0.19(bottom) with the uniform increment of 0.002, calculated nu-pehavior of(r) of course persists when the individual dy-
merically from Egs. (4.7) and (4.8; N=64, (a,b,e) namics becomes oscillatory.
=(1.0,0.58,0.1), Go,7,9)=(0.5,1.0,5.0).
V. SUMMARY
%: E(Xi—XB—Yi)ﬂLK(Y— Xi)+ Gosing(t) + f 5 «(1), In the present paper, we argued that in globally coupled
dt e ! ’ systems of nonlinear dynamical units, small noise or im-
posed heterogeneities can generally cause anomalously
dy; — strong dispersion of the synchronized clusters in the phase
g Xt bHKY =Y+ T v(0), (4.7 space. This was demonstrated numerically with a number of
population models with chaotic dynamical units. The nu-

where G,sin ¢(t) represents external random force wih merical results were explained theoretically in terms of a

generated from the dynamics of a random walker: multiplicative stochastic process with additive noise. It
turned out that the crucial condition for the occurrence of

a2 do such an anomaly is the rf_mdom fluctuatiqns_ pf the Io_cal

— =—y—+g1. (4.8 Lyapunov exponent associated with the individual units.
dt? dt This fact suggested some possible generalizations of the

class of systems capable of exhibiting similar behavior. In
Some numerical results of the above model are showmparticular, the chaotic nature of the individual dynamics
in Figs. 6 and 7, where the parameter values are choseseemed unnecessary provided the population is subjected to
such that the individual unit is nonoscillatory but excitable.a common random drive, and this was actually demonstrated
A nontrivial power-law dependence dfr) on f with a  with the population of the FitzHugh-Nagumo-type excitable
parameter-dependent exponent is again confirmed. Similamits.
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