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Abstract Stable signal transmission is crucial for informa-
tion processing by the brain. Synfire-chains, defined as feed-
forward networks of spiking neurons, are a well-studied class
of circuit structure that can propagate a packet of single spikes
while maintaining a fixed packet profile. Here, we studied the
stable propagation of spike bursts, rather than single spike
activities, in a feed-forward network of a general class of
excitable bursting neurons. In contrast to single spikes, bursts
can propagate stably without converging to any fixed profiles.
Spike timings of bursts continue to change cyclically or irreg-
ularly during propagation depending on intrinsic properties
of the neurons and the coupling strength of the network. To
find the conditions under which bursts lose fixed profiles, we
propose an analysis based on timing shifts of burst spikes
similar to the phase response analysis of limit-cycle oscilla-
tors.

1 Introduction

Cortical neurons often exhibit spike sequences that have mil-
lisecond precision (Prut et al. 1998). This observation sug-
gests that cortical circuits contain feed-forward networks, or
synfire chains. Dynamics of spike propagation throughout
the networks have been extensively studied under various
conditions (Abeles 1991; Diesmann et al. 1999; Cateau and
Fukai 2001; Teramae and Fukai 2007a,b). Recent experi-
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ments have shown that neurons in the high vocal center of
songbirds exhibit sequences of bursts of several spikes while
singing (Hahnloser et al. 2002). Individual neurons generated
bursts at precise times during a motif of the song, possibly
providing a precise temporal representation within the song.
These results indicate that the neural circuit of the songbird
may have a feed-forward network structure that propagates
bursts rather than single spikes (Jin et al. 2007).

Bursting can be found in a variety of physical and biolog-
ical systems (Rinzel and Troy 1982; Elezgaray and Arneodo
1992; Meucci et al. 2002). In the brain, bursting may arise
from several different mechanisms, including intrinsic prop-
erties of isolated neurons and population dynamics of neu-
rons (Terman 1991; Nowotny and Rabinovich 2007). For
example, in spatially extended systems, intrinsic or external
randomness of the system can evoke propagation of intermit-
tent activities, which result in bursting (Chaté and Manneville
1987; Osipov et al. 2005). Cortical ‘up’ states may be an
example of such a population activity in which bursts of
spikes propagate through recurrent neuronal networks
(MacLean et al. 2005). Although the functional role of
‘up’ states remains elusive, the propagating bursts may be
involved in faithful signal processing in the brain.

Here, we use the term ‘bursting’ in a more limited sense to
refer to the spike sequences generated by intrinsic and deter-
ministic dynamics of single neurons. This type of bursting
appears when slowly evolving variables modify the limit-
cycle oscillation of fast variables (Rinzel 1987; Izhikevich
2000). In neuronal firing, the membrane potential and spike
generating channels serve as fast variables, while the dynam-
ics of calcium or slow ionic channels are the slow variables.
These slow variables operate as bifurcation parameters that
can turn bursting off by driving the fast subsystem into a
state where only a mono-stable fixed point exists. The inter-
actions between the two sets of variables with different time

@ Springer



106

Biol Cybern (2008) 99:105-114

40 n
)
S 20
=
i
- Wl
0 .JJ.":"I{'I . -
0 40 80 120 160 200
time

Fig. 1 Propagation of bursts with complex evolution of profiles
through a feed-forward network, calculated numerically from Eq. 7.
Each layer of the feed-forward network has only one neuron. Short
vertical bars indicate the spike timings of these bursting neurons

scales create a rich variety of phenomena (Wang 1993; Han
et al. 1995; Raghavachari and Glazier 1999; Rulkov 2001;
Ivanchenko et al. 2004; Shilnikov and Cymbalyuk 2005;
Belykh et al. 2005; Medvedev 2006; Takekawa et al. 2007).
In this paper, we examine spike propagation inherent in
bursting dynamics, that is, stable burst propagation through
a feed-forward network without a fixed burst profile (Fig. 1).
We find that bursts can propagate stably showing complex
temporal profiles, a quality that is absent from propagation of
single spikes. Spatio-temporal patterns of complex propaga-
tion may broaden possible signal transmissions in networks
of neurons. To study propagation with a continually evolv-
ing spike pattern, we analytically calculate the shift of spike
timing induced by perturbing inputs during a burst. From
this, we derive a recursive relationship for the timing of out-
put spikes in adjacent layers of a feed-forward network. The
method is similar to the phase response analysis of limit-
cycle oscillators (Kuramoto 1984). This recursive relation-
ship allows us to clarify the conditions for burst propagation
without a fixed profile and to study the evolution of spike pat-
terns during burst propagation. We apply the method to an
important class of excitable bursting neurons (Rinzel 1987,
Izhikevich 2000; Guckenheimer and Holmes 1983). In addi-
tion, we show numerically that burst propagation with com-
plex evolving profiles is robust against background noise.

2 Propagation velocities of doublet spikes

To illustrate the essence of burst propagation, we first
consider the propagation of doublet spikes through a feed-
forward network in which each layer has only one excitable
bursting neuron. We say that neurons are ‘excitable bursting’
when they have a stable resting potential and respond to an
impulse input with at least two spikes. The spike timing of
a doublet burst is characterized by the latency of the first
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Fig. 2 Propagation of doublet spikes. a “Serial-mode” doublet prop-
agation. The second spike of the kth layer precedes the first spike of
the (k + 1)th layer. b “Parallel-mode” doublet propagation. The sec-
ond spike in the kth layer follows the first spike in the (k 4 1)th layer.
¢ Relationships between output spike timings and intervals of input
spikes determine the evolution of the doublet profile through layers

spike, L, and the inter-spike interval, ISI, between the first
and second spikes (Fig. 2). The latency is measured from the
arrival of the first input from the previous layer. We denote
their intrinsic values for a pulse stimulus as L° and ISI?
(Fig 3a), which generally differ from L and ISI obtained in
networks since following spikes from the previous layer per-
turb the spike timing. For the time being, we ignore the effect
of noise and assume that synaptic input is represented by an
instantaneous pulse given by a delta-function with constant
coupling strength, ¢. Later we will discuss those cases where
aburst consists of more than two spikes, where each cell layer
has more than one neuron and where the individual neurons
receive noisy input.

As illustrated in Fig. 2, two different modes of doublet
propagation seem to be possible depending on the timing of
the second spike. When the latency L of the first spike is
larger than the ISI, the second spike of a burst in the pre-
vious layer arrives before the first spike of the burst in the
current layer. We call this type of propagation “serial-mode”
propagation (Fig. 2a). In contrast, when L is shorter than
the ISI, the second input arrives after the first spike, and the
burst propagation is called “parallel mode” (Fig. 2b). In these
figures, the first and the second spikes of a burst are shown
as if they are propagating with the same velocity. However,
they have, in general, different velocities. In the next sec-
tion, we will derive the criteria for the generation of these
two modes and prove that, in parallel-mode propagation,



Biol Cybern (2008) 99:105-114

107

(@ (b) ()
© @ (e)
2 (@
E
Z L
& § ()
>
53
2
fast variables
(© @ ©
)
(&
/ o<} / °

Fig. 3 Intrinsic properties of an excitable bursting neuron which
appears via a homoclinic bifurcation. a Response of the bursting neuron
to an impulse input (dotted arrow). Trajectory of the bursting neuron
(thick black arrows) in a three-dimensional phase space (b) and in two-
dimensional slices perpendicular to the slow variable (c—e). Thin line
in (b) and black circles in (c—e) are stable fixed points, dotted line in (b)
and small gray circles in (c—e) are saddle points, gray surface in (b) and
the thick gray circle in (c¢) are limit cycles, and open circles in (c—e) are
unstable fixed points. Arrows from the saddle are unstable manifolds and
arrows into the saddle are stable manifolds. The limit cycle (¢) grows
until it collides with the saddle and its stable and unstable manifolds at
the homoclinic bifurcation point (d) and then disappears (e)

the second spike always propagates faster than the first one.
Therefore, parallel-mode propagation never occurs with a
fixed burst profile as in Fig. 2b. The second spike of this
mode chases the first one until the second eventually catches
up with the first. These spikes, then, restart chasing from an
initial interval and this endless chasing is the origin of the
continual evolution of burst profiles. Actually, we can see
a similar chase in Fig. 1 where the second and later spikes
propagate faster than the first spike until they catch up with
the first one.

3 Theoretical analyses of propagation
3.1 Recursive relationship of ISI between adjacent layers

The difference between the propagation velocities of the first
and second spikes is characterized by the evolution of ISI
between them. Their velocities are the same if the ISI is kept
constant while a burst travels through the layers, whereas the
second spike propagates faster (or slower) than the first one
if the ISI decreases (or increases) with propagation through
layers. In a feed-forward network, the IST at a layer is given
as a function of the interval between two input spikes. Since
the ISI of the kth layer is the interval of input to the (k + 1)th
layer, the recursive relationship, ISIx4; = F (ISI), describes
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Fig. 4 a Dynamics of the fast subsystem in the vicinity of the saddle
point. Dotted straight lines indicate projections to the unstable direction
along the stable direction. b ISI; as a function of ISI;

the evolution of spike timing along the layers. Since synaptic
couplings are instantaneous pulses, the function F (ISIy) is
independent of ISI; when ISI; < L% and IST;, > L9 4+ ISI°
(see Fig. 4b for example). ISI is kept constant across lay-
ers only when the function F has a stable fixed point ISIg
satisfying ISI; = F(ISI) and ‘F’ (ISIS)’ < 1, where the
dash denotes the derivative with respect to ISI. A stable solu-
tion to ISI; always exists in the serial-mode propagation since
F (ISIy) is constant and independent of ISIy when ISI; < L0,
In contrast, as we will see later, in almost all ranges of
parameter values, a stable solution to ISI; does not exist
in parallel-mode propagation. Interestingly, this absence of
ISI; does not mean the failure of doublet spike propagation.
Rather, it implies a novel form of stable burst propagation
with a non-converging burst profile.

3.2 Excitable bursting appears via homoclinic bifurcation

An analytical evaluation of the function F is possible when
bursting appears via homoclinic bifurcation (Fig. 3), where
the limit cycle passes through the neighborhood of the saddle.
This bursting is the most common type of excitable bursting
and is commonly observed in the bursting of the Hindmarsh-
Rose model (Hindmarsh and Rose 1984) and many realistic
neuron models (Chay and Keizer 1983; Butera et al. 1999;
Vries and Sherman 2000; Izhikevich 2006). Before burst
emission, the fast subsystem of this type of bursting neu-
ron is in a bistable state that consists of a stable fixed point
and a limit cycle separated by a saddle point (Fig. 3c). A
strong enough spike input pushes the fast variables from the
fixed point to the basin of attraction of the limit-cycle oscilla-
tor beyond the stable manifold of the saddle. This initiates a
rotation along the limit cycle and a series of spikes, which in
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turn move the slow variables to modify the fast phase space
until the limit cycle is annihilated by a homoclinic bifurca-
tion or a collision with the saddle point. This annihilation
terminates the series of spikes and results in bursting. We
can assume that the limit cycle passes through the neighbor-
hood of the saddle point. Since the dynamics are slow near
the saddle, the fast variables stay long in the neighborhood,
while they travel the remaining part of the limit cycle in a rel-
atively short time denoted by 71 c. We can also assume that
the values of the slow variables do not change while the fast
variables pass through the vicinity of the saddle. The func-
tion F is, therefore, derived only from the fast dynamics in
the neighborhood of the saddle with fixed values of the slow
variables.

The system’s time evolution near the saddle is described
by a linear summation of stable and unstable dynamics
(Fig. 4a). Projecting the fast variables to the unstable direc-
tion along the stable one gives a reduced one-dimensional
equation of the unstable mode u,

i = 3u(u+d), N

where A (> 0) is the unstable eigenvalue of the saddle and
d is the position of the stable fixed point measured along the
unstable direction. The two parameters take different values
before (A and d1) and after (A, and d>) the first spike, since
the slow variables may increase during the spike generation.
Setting spike threshold to u1(>> d) and integrating Eq. 1
gives the timing of spikes as

u1(uo+d))
uo(ur +dy )’

under initial condition u(0) = wup. Using ¢, the intrinsic
times of the first and second spikes are determined by,

ty(uo; A, d) = %log( (2)

LY =t5(ey — dy; 1, dy) 3)
and
IS = 1, (uy; A2, do) + TLCs )

where ¢, is the input strength measured along the unstable
direction and u; is the effective initial value of u after the first
spike, which is almost equal to, but slightly smaller than, the
distance of the limit cycle from the stable direction of the
saddle along the u-axis. If the attraction of the limit cycle is
infinitely strong, the two values should be exactly the same.
The dimension of ¢ is equal to dimensions of # and d. Then,
F(x) is given as,

ISI°, x < L9, L9 +1SI° < x
Fx)=1x—L%—7c+max (tf;(u (x—L'—1ic,v,)  (5)
+e522,d2),0), L < x < LO+1SI°

where u(t, ug) is the solution to Eq. 1 with A = X, and
d = d, for initial value u. Taking the maximum in Eq. 5
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is necessary to ensure causality. Fig. 4b displays a typical
profile of F. The function F(x) is generally discontinuous
at x = LY. When the dynamical state passes the interval
LY < x < LY 4 11 or approaches the point x = L, F(x)
becomes slightly larger than ISI? since the burst input kicks
the fast variables out of the limit-cycle trajectory. We do not
take this small effect into account in the present analysis.
Since the function f; is sensitive to external input when the
fast variables stay near the stable manifold of the saddle, the
value of F(x) is suddenly decreased when x goes beyond L°.
Serial-mode propagation occurs when L? — ISI® > 0 (see
Fig. 6a and c for example). Solving this inequality, we find
that the weak coupling regime, ¢ < &, always shows serial-
mode propagation since L is a monotonically decreasing
function of ¢ while ISI? is independent of ¢. The critical
value & is the unique solution to L0 = ISI.

When e > &, doublet propagation occurs in parallel mode
without a fixed profile if the equation x = F(x) does not have
stable solutions in the range L° + ric < 7 < L% 4+ ISI°.
However, the propagation itself can be stable. Since u(¢, uq)
is an increasing function of ¢, #;(ug, A, d) is a decreasing
function of ug, and the slope of F is always smaller than 1,

dty ou

dF
= — — <
du of|,_, —

i (6)
Taking into account the right boundary condition, F (L% 4+
ISIO) = ISI° < LY 4+ ISI°, we obtain the condition that
ensures parallel-mode propagation with a fixed profile as,
F(L0 + t1c) > L0 + TLc, that is, ts(ey + ur, Ao, dp) >
ts(ey —di, A1, d1). However, since the initial state u, always
satisfies e, + u;y > &y — dj, the condition cannot be sat-
isfied if np = X2/d>y > n1 = Ay1/di. Even when 1y <
n1, the condition is satisfied only by values of ¢ greater
than ¢,,, where ¢, is the solution to (&, + ur, Ay, dr) =
ts(em — d1, A1, dy). Since &, ~ |n2/n1 — 1|_1, the value of
&m increases rapidly as the difference 1 — 7> becomes small,
and the input strength can easily exceed the acceptable value
determined by ug + ¢, < u1. Thus, we can conclude that,
except in the extreme case where d>/d; >> Ap/11 and ¢ is
also extremely large, propagation in the parallel-mode occurs
only with a continually evolving profile, but not with a fixed
burst profile.

The above analysis using the function F revealed why the
burst profile can continue to change during its propagation.
In parallel-mode propagation, the second spike of the k-th
layer arrives after the first spike of the (k + 1)th layer and
advances the timing of the second spike of the (k 4 1)th layer
since F(x) < x for LO4+11c < v < LO4ISI” (see Fig. 6d).
Thus, the second spike propagates faster than the first spike
until it finally catches up with the first one. The spikes repeat
this endless chase, generating a continually evolving burst
profile.
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The function F(x) can be related to the phase response
curve (PRC, Z(0)) of limit-cycle oscillators. PRC is defined
as the phase shift induced by an infinitesimal perturbation
along the oscillatory orbit (Kuramoto 1984). During a burst,
the evolution of slow variables continuously modulates the
limit cycle consisting of the fast subsystem. The limit cycle
is, however, sufficiently stable for defining a PRC if the
modulations remain small. Mathematically, the phase shift
coincides with PRC when the shift is measured with a post-
stimulus period which asymptotically relaxes back onto the
limit cycle from the perturbed state. Practically, however,
the timing shift of next spike induced by an input is well
approximated by PRC (Hansel et al. 1995; Netoff et al. 2005).
This approximation gives the relationship between F'(x) and
PRC as Z(0)e = 2n (1 — F (t (0)) /T2p), where T () =
Lo + (ISIp/27) 6. As PRCs have been measured in real
neurons (Reyes and Fetz 1993; Galan et al. 2005; Tsubo
et al. 2007a,b), similar experiments enable us to record F(x)
directly from real bursting neurons.

4 Numerical simulations of the neuron chain

To confirm the above results, we calculate burst propagation
numerically using a continuous differential equation for a
model of an excitable bursting neuron (Izhikevich 2006):

V=—INna— Ix (n) — Iyy (W) — leax
+e Z Z ) ([ - tpre,spike)
pre spike (7)

Tyl = Neo (V) — 1
Ty = Weo (V) — w,

where fyre spike are the times of input spikes from the pre-
vious layer. Fast variables are membrane potential v and
gating variable n of a fast spike-generating channel, while
gating variable w works as a slow variable. The mathemati-
cal details of the ionic channels are described in the Method
section. Figure 5 summarizes the intrinsic properties of the
model neuron. Comparing these figures to Fig. 3, we can see
that the model exhibits a homoclinic bursting. We arrange
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the model neurons in a feed-forward chain in which each
layer has a single neuron. The coupling between adjacent
layers is a delta-function applied to v with strength . When
the coupling strength is small, but is large enough to initi-
ate spikes in the next layer, bursts propagate through ser-
ial modes (Fig. 6a). The fixed point on the function F, i.e.,
ISI; denoted by the square symbol in Fig. 6c, is equal to
ISIC. Bursts propagate while maintaining a fixed profile. In
contrast, when ¢ is strong, the burst propagation turns into
parallel mode (Fig. 6b). The function F(ISI) has no fixed
points and the value of ISI; changes throughout propaga-
tion. The analytically derived function F accurately predicts
these changes in ISI (Fig 6d). As indicated by the form of
F(x), the value of x falls in a range of x < L0 and returns
to F(x) = ISI” in its evolution. Therefore, the evolution
of burst profile during doublet parallel-mode propagation is
always periodic. In the specific examples shown in Fig. 6b
and d, the period is three. As mentioned in the previous sec-
tion, if i1 is much larger than 7, and if ¢ is sufficiently large,
even parallel-mode propagation may exceptionally display
a fixed temporal profile. However, we could not find such a
set of parameter values in the present simulations. Figure 7a
shows a phase diagram that summarizes the burst propaga-
tion in this model. As we expected, the burst propagation
displays a fixed profile only in small regions of parameter
values for relatively weak coupling strength ¢ Fig. 7b). The
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Fig. 6 a Propagation of doublet spikes calculated numerically from
Eq. 7 with gy = 6.2 and ¢ = 1.25(< &¢). Other parameters are the
same as in Fig. 1. b Similar plot of (a) but for a larger coupling strength,
e = 1.7(> &c). ¢, d The function F (ISIj) calculated numerically, gray
dotted curves, from the single neuron models corresponding to (a) and
(b), respectively. Black curves are analytical results. Open squares and
connecting arrows are derived from (a) and (b) to show the evolution
of the doublet profile along the layers
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Fig. 7 Phase diagram and raster plots of burst propagation. a The inte-
gers above the abscissa indicate the number of spikes generated by a
single neuron in response to a pulse input (see Fig. 5a). Parenthetic
alphabets show the parameter values used below in raster plots. Thick
dotted line is the boundary between the two propagation modes pre-
dicted by our theoretical analysis. Burst propagation shows (b) a fixed
[corresponding to the shaded area in (a)], ¢, d a cyclic or e an irregularly
changing temporal profile. We classify the bursting profile as “irregu-
lar” when we cannot detect any periodicity after propagation over 100.
layers

border between doublet propagation with and without fixed
profiles is well fitted by the theoretical curve. Burst propaga-
tion exhibits more complex evolving patterns when it consists
of more than two spikes (Fig. 7c, d). Similar to doublet prop-
agation, the endless chase among spikes is the cause of con-
tinuing evolution of the burst profile. However, the analysis
with a recursive map similar to F(x) is complicated when a
burst contains more than two spikes, since the phase space of
the recursive relationship would be multi-dimensional and
the number of intraburst spikes may change from layer to
layer. We show an example of propagation with an irregu-
larly changing profile in Fig. 7e. Unlike doublet propagation,
burst propagation looks chaotic rather than periodic, although
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whether this propagation is really chaotic should be clarified
by future studies.

5 Burst propagation under a noisy environment
5.1 Chain of single neurons

So far, we have neglected the effects of background noise
on burst propagation. Background noise may disturb faith-
ful signal propagation (Destexhe and Contreras 2006; Van
Rossum et al. 2002; Mehring et al. 2003; Fellous et al. 2004;
Beggs and Plenz 2004) and, moreover, may create nontriv-
ial effects in nonlinear systems (Gammaitoni et al. 1998;
Zhou and Kurths 2002; Teramae and Tanaka 2004, 2006).
To examine the robustness of the present burst propagation
against background noise, and to examine the effect of noise
on the complex evolution of the profile of bursts, we conduct
numerical simulations of burst propagation in the presence
of noise. We first treat the case where each cell layer consists
of a single neuron, as in the previous sections. Figure 8a is
a phase diagram which summarizes the success and failure
of burst propagation at various values of noise intensity o
and coupling constant ¢. The region of failure can be fur-
ther divided into three parts. If both o and ¢ are small, a
presynaptic input often fails to activate a postsynaptic neu-
ron, and the propagation stops midstream (Fig. 8b). When
o is sufficiently large, the noise may activate any neuron
in any layer, randomly starting burst propagation (Fig. 8c).
The boundary between the two phases is ambiguous since
both accidental stop and start can occur near the boundary.
When o is small but ¢ is sufficiently large, the last spikes
in individual bursts are delayed and propagate as separate
single spikes (Fig. 8d). When the last spikes are generated,
the cells are in a period of after-hyperpolarization induced by
the preceding burst of spikes. Therefore, the latency of spike
generation is prolonged and input from the previous layer can
evoke only single spikes rather than bursts. In a mid-range of
&, bursts propagate successfully as long as o is sufficiently
small (Fig. 8e). The critical value of ¢ necessary to overcome
the disturbance of noise often exceeds the boundary between
serial and parallel-mode propagation. Therefore, stable burst
propagation shows an evolving temporal profile.

5.2 Chains of multi-neuron layers

So far, we have considered propagation of bursts through
layers of single neurons, assuming that the size of a unitary
excitatory postsynaptic potential (EPSP) is sufficiently large
to activate postsynaptic neurons. An actual EPSP, however, is
not so large, and coincident inputs from multiple neurons are
required to evoke spikes from a postsynaptic neuron. In this
subsection, we study how bursts propagate through a chain in

(a)
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03 sudden stop

split —

0 40 80 120 0 100 200

0 100 200 0 40 80
time time

Fig. 8 Phase diagram and raster plots of burst propagation through a
chain of single neurons in the presence of background noise. a Gaussian
white noise of mean zero and variance ¢ was added to the dynamics
of v in Eq. 7. The values of parameters are the same as those in Fig. 1
except that g,, = 2.8. Parenthetic alphabets indicate the parameter
values used below in raster plots. Failed propagation can be classified
into three types: sudden stop (b), random start (c) and split (d). e Bursts
propagate stably with complex evolving temporal profiles in the shaded
region of the phase diagram given in (a)

the presence of noise when individual layers are comprised
of multiple neurons.

Figure 9 displays a phase diagram for a chain of layers of
multiple neurons. Each neuron in a layer receives inputs from
ten neurons in the previous layer. Accordingly, the weight of
each synapse is reduced approximately by a factor of 10, so
that the total amplitude of EPSPs remains unchanged from
the previous subsection. Compared to Fig. 8, the region of
successful burst propagation is much wider in Fig. 9. As
in Fig. 8, three types of failure are observed (Fig. 9b, c).
Successful propagation can be classified into two subtypes.
When the coupling is small, bursts can propagate through
layers, preserving an almost fixed temporal profile (Fig. 9d
and left panels of Fig. 10). When the coupling is large, burst
propagation is accompanied by a complex evolving profile:
the times of intraburst spikes change significantly from layer
to layer (Fig. 9e and right panels of Fig. 10). The bursting
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Fig. 9 Phase diagram and raster plots of burst propagation through
layers of multiple neurons in the presence of background noise. a Each
layer consists of 20 neurons that receive inputs from 10 neurons in the
previous layer. The values of parameters are the same as in Fig. 8. Par-
enthetic alphabets show the parameters used below in raster plots. As in
Fig. 8, failed propagation can be classified into three types (b, ¢). Suc-
cessful propagation is classified into two subtypes: d bursts propagate
stably keeping almost fixed profiles (corresponding to the dark shaded
region in (a)) or (e) they propagate showing complex evolving profiles
(corresponding to the light shaded region in (a); see also Fig. 10). After
a burst passes a layer, sporadic spikes are strongly suppressed in the
layer by the hyperpolarization of the membrane potentials

pattern is regular and spikes are coincident in some layers
(Fig. 10e), while the spike timing is highly diverse in other
layers (Fig. 10f). As shown in the previous sections, com-
plex propagation patterns emerge from the intrinsic dynam-
ics of bursting since the strength of noise is identical in all
layers.

6 Conclusions and discussion

We have shown that bursts propagate stably through a feed-
forward network with a periodic or an irregularly-evolving
profile. The timing shifts of intraburst spikes determine the
conditions that generate stable burst propagation with or
without a fixed temporal profile. Strong couplings between
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Fig. 10 Propagation through layers of multiple neurons with and with-
out evolving profiles in the presence of background noise. Raster plots
in (a) and (d) are the same as those in Fig. 9d and e, respectively. Raster
plots in (b) and (c) are magnified versions of (a), and those in (e) and
(f) are magnified versions of (d). Burst propagation alternates between
irregular asynchronous firing (e) and near-synchronous regular firing (f)

the layers enhance the stability of burst propagation without
a fixed profile. The complex evolution of the bursting profile
is not impeded by background noise. Noisy input produces
differential effects on the bursting patterns in different layers:
the times of intraburst spikes are widely scattered by noise in
some layers, while a regular temporal arrangement is main-
tained in other layers. We have used a delta-function-like
input from previous layers. We have verified that our model
gives essentially the same results for synaptic input with a
finite decay constant as long as it is sufficiently smaller than
the typical value of ISIs.

Complex spatio-temporal patterns of burst propagation
may enrich signal transmissions through feed-forward neu-
ronal networks. It is intriguing to study how various bursting
patterns may be utilized in cortical computations, or to eval-
uate the capacity of heterogeneous feed-forward networks
(see, for instance, Teramae and Fukai 2007a) in propagating
various bursting patterns. A noise-induced irregular spread of
population activities along with their power-law distributions
has been reported in a globally coupled system (Teramae and
Kuramoto 2001). Analysis of critical population dynamics
in unsteady burst propagation will be an interesting future
subject.
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7 Method

The ionic currents in Eq. 7 are given as INg = gNaMoo (V)
(v—ENa), Ik (n) = ggn(v—Eg), Iy(w) = gyw(@w—Eg)
and lieax = gleak (V — Eleak ), Where the steady-state functions
aredefined as soo (v) = 1/ (1 + exp (— (vs + v) / hy)) fors=
m, n and w. Figure 1 was obtained with the following values
of parameters: gn, = 20.62, g = 12,8, = 1.5, gleak =
8, ENa = 60, Ex = —90, Ejeqx = —80, 17, = 0.148, 7, =
100, v, = vy = 20, v, = 25, hy, = 15, h;y, = hyy = 5 and
& = 1.8. The units for the conductance, voltage and decay
constant are [mS], [mV] and [msec], respectively.
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