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Abstract How cortical neurons process information cru-
cially depends on how their local circuits are organized.
Spontaneous synchronous neuronal activity propagating
through neocortical slices displays highly diverse, yet repeat-
able, activity patterns called “neuronal avalanches”. They
obey power-law distributions of the event sizes and life-
times, presumably reflecting the structure of local circuits
developed in slice cultures. However, the explicit network
structure underlying the power-law statistics remains un-
clear. Here, we present a neuronal network model of pyrami-
dal and inhibitory neurons that enables stable propagation of
avalanche-like spiking activity. We demonstrate a neuronal
wiring rule that governs the formation of mutually overlap-
ping cell assemblies during the development of this network.
The resultant network comprises a mixture of feedforward
chains and recurrent circuits, in which neuronal avalanches
are stable if the former structure is predominant. Interest-
ingly, the recurrent synaptic connections formed by this
wiring rule limit the number of cell assemblies embeddable
in a neuron pool of given size. We investigate how the resul-
tant power laws depend on the details of the cell-assembly
formation as well as on the inhibitory feedback. Our model
suggests that local cortical circuits may have a more complex
topological design than has previously been thought.
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Cortical microcircuit is the fundamental functional unit of
information processing in the cortex, and much effort has
been made to clarify the neuronal wiring of cortical neurons
(Braitenberg and Schuz, 1998; Holmgren et al., 2003; Gupta
et al., 2000; Stepanyants et al., 2004; Kalisman et al., 2005;
Foldy et al., 2005; Yoshimura et al., 2005). These studies
have revealed many interesting features of the connectivity
among a relatively small number of cortical neurons. How-
ever, anatomical or electrophysiological methods alone are
not powerful enough for revealing the topology of neuronal
wiring among thousands, or tens of thousands, of cortical
neurons. Another approach is necessary. Here, we attempt to
derive a plausible wiring pattern of cortical neurons by ask-
ing, theoretically, what explicit network structure may under-
lie “neuronal avalanches” and their characteristic power-law
statistics.

Neuronal avalanches represent temporally precise, spon-
taneous synchronous activity, and have been recorded in slice
cultures of rat layer 2/3 cortex by multi-electrode arrays
(Beggs and Plenz, 2003, 2004; Stewart et al., 2004; Vo-
gels et al., 2005). They have significantly varied sizes and
lifetimes that are power-law distributed with an exponent
of − 3/2 or − 2, respectively. Since a nonlinear dynamical
system often exhibits power law statistics when in a certain
critical state, Beggs and Plenz (2003) has suggested that neu-
ronal avalanches may represent a critical branching process
(Fig. 1(b), left) (Harris, 1989; Zapperi et al., 1995).

There are two main schemes for achieving neuronal
avalanches. The first is what we call a “critical branching
process in activity (CBPA)”. In short, the CBPA is an at-
tempt to implement the critical branching process by neu-
ronal populations. In this scheme, an avalanche consists of
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Fig. 1 Breakdown of power laws in CBPA. (a) Left, Power-law dis-
tributions of event size (upper trace) and lifetime (lower trace) were
calculated for the critical branching process by solving the stochastic
Eq. (1a). Right, Similar distributions were calculated for the gamma
distribution-based wiring process by solving Eq. (2). (b) Branching
process models in which each ascendant projecting to four descendants
(i.e., branching index Q = 4). Activity of each node can propagate to
its descendant with probability p, and θ active ascendants are necessary
for activating a descendant: θ = 1 and p = 0.25 (solid curve); θ = 2,

p = 0.4, 0.45 and 0.5 (gray curves, from heavy to light). The dashed
line represents an exponent of − 3/2. (c) Each node is represented
by four independent sub-nodes. Each sub-node in an ascendant node
projects to all eight sub-nodes in two descendant nodes and activates
each descendant sub-node with a probability of 0.955, which is slightly
smaller than the critical value (1/2)1/16 in the present case. Thus con-
structed projections were rewired randomly between different nodes in
the same generation with a probability of 0 (solid), 3 (gray) and 5 %
(light gray). The dashed line represents an exponent of − 3/2

sequentially activated nodes, where each node is a group of
neurons (Fig. 1(c)). Each node projects to Q other nodes,
and at criticality, the probability that a node can activate one
of its descendant nodes is 1/Q. Here, a node is active if a
large enough fraction of neurons for activating its descen-
dants is active. Importantly, nodes cannot be overlapping, so
if a neuron is in one node it is not in any other.

The second scheme is what we call a critical wiring pro-
cess (CWP). In this scheme, each node projects to exactly
one node, and if a node is active, its descendant node is ac-

tive with probability 1. In addition, nodes can overlap, so a
single neuron can belong to more than one node (Fig. 2(a),
right).

We show in this study that CBPA can exhibit avalanches
only if it is finely tuned. Allowing, for example, only a few
percent of the neurons to project outside their target nodes
destroys power low behavior. This seems inconsistent with
known cortical anatomy. The CWP, on the other hand, is
highly robust to perturbations. Thus, it represents a much
more likely wiring diagram than the CBPA.

Springer



J Comput Neurosci (2007) 22:301–312 303

To achieve the CWP, we propose a stochastic wiring rule
to develop synaptic connections in a population of pyramidal
neurons and interneurons. With a simple probability rule to
determine the sizes of successive nodes, the wiring process
mathematically resembles the branching process. The resul-
tant neuronal wiring is a heterogeneous ensemble of sub-
networks that stably propagate avalanche-like synchronous
activity consistent with power laws. The topological pattern
of this neuronal wiring has not been known previously.
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Fig. 2

We may regard the developed network as an ensemble of
predominantly feedforward subnetworks (“synfire chains”)
comprising overlapping cell assemblies. Synfire chains ac-
counted for precisely-timed spike sequences observed in
in vivo and in vitro cortical networks (Abeles, 1991; Prut
et al., 1998; Reyes, 2003; Ikegaya et al., 2004; Kitano and
Fukai, 2004), and were recently revived as a candidate of the
avian neuronal circuits engaging in song learning (Hahnloser
et al., 2002; Kimpo et al., 2003). While a purely-feedforward
synfire chain has extensively been studied in computational
models (Diesmann et al., 1999; Cateau and Fukai, 2001), its
generalization with a more realistic wiring pattern of cortical
neurons seems difficult (Mehring et al., 2003; Vogels et al.,
2005). This study proposes such a generalization in a way
that is consistent with neuronal avalanches.

Methods

Wiring procedure

Consider a large pool of N excitatory and N/4 inhibitory neu-
rons which initially have no synaptic connections between
any neuron pair. Throughout this study, N is set to 10,000.
We arrange excitatory and inhibitory neurons into successive
cell layers, or nodes, according to the following procedure.
We note that layers in this model do not necessarily corre-
spond to cortical layers but they are a metaphor that makes
the connectivity or the topology of local cortical circuits

� Fig. 2 The developmental rule and the structure of entangled syn-
fire chains in CWP. Unless otherwise stated, the results are shown for
m = 20, σ = 4 and M = 200 throughout the paper. (a) The rule for
grouping and wiring neurons is schematically illustrated (see Methods
for details). First, the sizes of consecutive cell assemblies are deter-
mined by a Markov process (left), and then the corresponding number
of neurons is selected randomly for each cell assembly from an exci-
tatory neuron pool (right). Excitatory neurons (triangles) in the con-
secutive layers are connected in a feedforward manner. Each inhibitory
neuron (circle) receives input from a specific layer, and projects to the
excitatory neurons randomly chosen from the entire neuron pool. (b) A
9-layer synfire chain is exemplified in a 10,000-neuron network. Upper,
Solid lines represent the feedforward connections between consecutive
cell assemblies. Lower, The same synfire chain automatically involves
a considerable number of feedback connections as well as feedforward
connections between distant assemblies. These connections represent
feedforward connections between adjacent assemblies in other synfire
chains, and typically constitute about 10% of all connections in a chain.
(c) The number of the cell assemblies to which a neuron belongs obeys a
Poisson distribution. (d) The sizes of successive layer pairs (n(k − 1),
n(k)) are plotted with red dots. The conditioned gamma distribution
(bold solid curve), from which n(k) was sampled, is drawn, being laid
down, at n(k − 1) = 50 for α = 0.1 (see also Fig. 5(a) about the pro-
files of the gamma distributions for different α values). The blue dotted
line designates the relationship, n(k) = n(k − 1), which is essential
for achieving a critical process in the present neuronal wiring (see Eqs.
(1) and (2))
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easy to visualize. We choose m (� N ) excitatory neurons
randomly from the neuron pool and set them to an initial
layer of a first chain. Successive layers are constructed by
selecting a variable number of excitatory and inhibitory neu-
rons randomly from the neuron pool. Let nk be the number of
excitatory neurons in the k-th layer. Then, nk is determined
according to a stochastic process with a certain conditional
probability distribution P(nk |nk−1) that has an average equal
to the size nk−1 of the preceding layer (Fig. 2(a), left). The
selection of the number of cells in each layer, being depen-
dent on the previous layer, is a Markov-chain. The selection
process is repeated to make consecutive layers in a synfire
chain. Each neuron in a layer receives synaptic inputs from
m excitatory neurons in the preceding layer. The multiple
sets of presynaptic neurons are chosen independently for the
individual postsynaptic neurons without any bias (Fig. 2(b),
upper). As shown later, each layer of excitatory neurons fires
synchronously and may define a functional cell assembly in
this model.

If the layer size chosen exceeds a certain range at some k,
that is, nk < m or nk > M ( m < M � N ), then the chain
is terminated at the (k − 1)-th layer, and a new chain is
started with a new initial layer of m excitatory neurons. The
above procedure is repeated to construct sufficiently many
chains. The lower bound m is necessary since postsynaptic
firing requires a sufficient number of presynaptic spikes.
The upper bound M keeps synaptic connections sufficiently
sparse (Rolls and Treves, 1998; Brunel, 2000) in order to
embed a large number of chains in a given neuron pool.
Unless otherwise mentioned, m = 20 and M = 200.

Inhibitory neurons are introduced in each cell assembly,
keeping the number ratio between excitatory and inhibitory
neurons at 4:1 (Fig. 2(a), right). Thus, layer k contains nk /4
inhibitory neurons. Each inhibitory neuron is projected to
by m randomly-chosen excitatory neurons in the preceding
layer. However, unlike excitatory neurons that project se-
lectively to neurons in the succeeding layer, the inhibitory
neurons project non-selectively to 5% of all excitatory neu-
rons in the entire neuron pool (Fig. 2(a), right).

In summary, we can express the synaptic connections from
excitatory neuron j to excitatory neuron i as

gi j =
P∑

µ=1

l(µ)−1∑

k=1

ξ
µ,k+1
i η

µ,k
j ,

where P is the total number of synfire chains and l(µ)
is the length of the µ-th chain. The N-dimensional vec-
tor ξµ,k = {ξµ,k

i }i=1,···,N represents neurons belonging to
the k-th layer in the µ-th chain: ξ

µ,k
i = 1 if neuron i be-

longs to the layer and ξ
µ,k
i = 0 otherwise. We derive vector

ηµ,k from ξµ,k by randomly choosing m of the “1” com-
ponents in ξµ,k and setting all other components equal to

0. As expressed by the above synaptic matrix, whenever
the same pair of pre- and postsynaptic neurons appears,
we increment the corresponding synaptic weight by unit
strength.

Regarding P(nk |nk−1), we first consider the case where
P(nk |nk−1)|nk−1=n is a Gaussian with mean n and variance
σ 2n. Note that the value of σ determines the degree to which
the size of consecutive layers can vary. However, we find that
this distribution cannot account for all the known properties
of neuronal avalanches. Therefore, we investigate the case
where the distribution is given as P(nk ; α|nk−1)|nk−1=n =
P�(nk − n + σ

√
αn; α, σ

√
n/α) in terms of the gamma dis-

tribution P�(x ; α, β) = xα−1 exp(−x/β)/βα�(α). As in the
first case, this distribution has mean n and variance σ 2n
at an arbitrary value of parameter α. Unless otherwise
stated, α = 0.1 and σ = 4.0. We also study the case where
P(nk |nk−1)|nk−1=n is independent of n and is given as a Gaus-
sian with mean m and variance σ 2m that are common to all
layers.

Neuron model

The following membrane potential dynamics closely mimic
the firing patterns of cortical neurons (Izhikevich, 2004) and
were used in the present simulations:

v̇ = 0.04v2+5v + 140−u−gAMPA(v−0)−gGABA(v+70)
u̇ = a(bv − u)

where (a, b) = (0.02, 0.2) and (0.1, 0.2) for excitatory
and inhibitory neurons, respectively. If ν reaches 30 mV,
it is reset to − 65 mV and u is increased by 8 in excitatory
neurons and by 2 in inhibitory neurons. On each excitatory
or inhibitory neuron, the net conductances of AMPA and
GABAergic synapses obey equations of the following form:

ġ = −g

τ
+ gXY

∑
δ(t − tspikes) + gXY,b

∑
δ(t − trandom),

where τ = 5 and 6 ms for AMPA and GABAergic synapses,
respectively. The unit amplitudes of the peak conductance
rises, gXY , are set as gEE = 0.0105 for an excitatory-to-
excitatory, gEI = 0.0075 for an excitatory-to-inhibitory,
and gIE = 0.03 for an inhibitory-to-excitatory synapse. If
a pre and postsynaptic neuron pair are connected multiple
times in constructing the layers of cell assemblies, the cor-
responding synapse is increased by the unit. Similarly, gXY,b

are set as gEE,b = 0.009, gEI,b = 0.011, gIE,b = 0.05,
gII,b = 0.05 and the rates of excitatory and inhibitory back-
ground spikes are set as 800 and 200 Hz, respectively such
that excitatory and inhibitory neurons may exhibit sponta-
neous firing of about 1 Hz in the absence of gXY .. It is worth
while to note that replacing the above neuron model with

Springer



J Comput Neurosci (2007) 22:301–312 305

a simpler leaky integrate-and-fire neuron does not affect
the power laws in the present network model. The above
model, however, allows synchronous activity to propagate
at a physiologically realistic speed (about 4 ms per layer),
whereas integrate-and-fire neurons require the adjustment of
the propagation speed by an explicit inclusion of synaptic
delays.

Results

Network topology

Since the power laws of neuronal avalanches coincide with
those of a critical branching process, our neuronal wiring
rule is based on a Markov stochastic process that mimics the
mathematical structure of the branching process. The rule
governs the development of synaptic connections in a pop-
ulation of excitatory and inhibitory neurons and creates an
ensemble of predominantly feedforward subnetworks of cell
assemblies having a variety of sizes (Fig. 2(a): see Meth-
ods for details). We note that the wiring rule allows the
individual neurons to participate in multiple cell assemblies
in the same or different chains (Fig. 2(c)). This makes the
neuronal network more complicated than a mere collection
of independent purely-feedforward subnetworks: a consid-
erable number of feedback or recurrent connections are also
formed within and between the individual chains (Fig. 2(b).
lower). Suppose that two excitatory neurons belong to ad-
jacent layers in some chain, one belonging to the first layer
and the other to the second layer. By construction of the
chain, this neuron pair acquires a feedforward connection.
If the second neuron participates in another chain, then this
synaptic connection that was ‘feedforward’ in the previous
chain, now links the two different chains. If the first neu-
ron also appears in a distant layer of the second chain, the
same synaptic connection represents a distant feedforward
or feedback connection in this chain. Thus, the functional
meaning of a synaptic connection can vary depending on
which subnetwork is activated.

The average number of synaptic connections that is not
categorized as feedforward connections in a single chain is
given as Pms3

N 2 , where s = ∑l
k=1 nk is the size of the chain

(see Appendix). Typically, more than 10% of synaptic con-
nections within a chain constitute such non-feedforward con-
nections when P = 200, N = 104 and s = m = 20. The
same formula represents the average number of synaptic
connections between each pair of different chains. There-
fore, the degree of the interferences between different chains
is increased with the total number of the embedded cell as-
semblies. As we will see later, the overlaps between synfire
chains restrict the number of the chains embeddable into a
neuron pool of given size.

The proposed stochastic wiring rule generates strong cor-
relations between the numbers of neurons in adjacent lay-
ers. Figure 2(d) displays the sizes of adjacent layer pairs
( nk−1, nk ) in the case where the sizes were determined us-
ing the gamma distribution P(nk ; α|nk−1) (see Methods).
The result indicates the relationship nk ≈ nk−1, as expected.
The asymmetric distribution of the plots is due to the skewed
shape of the gamma distribution. As shown later, the size
and lifetime distributions of avalanche-like activities in our
model enjoy an excellent agreement with those measured in
experiments (Beggs and Plenz, 2003) when we employ the
gamma distribution shown in Fig. 2(d) in the wiring rule (see
also Fig. 5(a)). We remark that the total amplitudes of syn-
chronous activity recorded in consecutive time bins should
exhibit correlations similar to those shown in Fig. 2(d), if the
proposed network underlies neuronal avalanches.

Power-law statistics of synchronous activity

In previous experiments, neuronal avalanches were induced
in cortical slices by bath application of the glutamate-
receptor agonist NMDA and a dopamine D1-receptor agonist
(Beggs and Plenz, 2003, 2004). Such neuronal activities ex-
hibited diverse, yet precise spatiotemporal activity patterns,
indicating that they were initiated from spontaneous firing
of divergent, but fixed subsets of neurons. The present neu-
ron model does not have any intrinsic mechanism to activate
the cell assemblies spontaneously. Therefore, in this study
synchronous neuronal activity was evoked by a brief exter-
nal input to the initial layers of individual synfire chains.
In doing so, we activated all chains repeatedly with equal
probability.

The synchronous activity thus evoked in an arbitrary chain
could stably travel to the terminal layer along the chain, ir-
respective of its length (Figs. 3(a) and (c)). A characteristic
feature of the present network model is large fluctuations
in the amplitude of a propagating spike packet. To show
this, we plotted the time course of the avalanche-like spiking
activities traveling through a short and a long chain (Figs.
3(b) and (d)). The large amplitude fluctuations in neuronal
activity reflect the fluctuations in the layer size along the
chains. During each event of synchronous activity propaga-
tion, inhibitory neurons tend to be activated more often than
excitatory neurons since they participate on average in more
assemblies than excitatory neurons (Fig. 3(e)).

We calculated the size and lifetime distributions of syn-
chronous activity patterns in the case that the cell assemblies
were embedded by two Gaussian distributions (Methods).
We defined the size of each synchronous activity pattern as
the total number of neurons activated in the activity propaga-
tion. We find that the size distribution exhibits a power law
of exponent − 3/2 in agreement with experimental results,
if the mean of the Gaussian distribution is always reset to the
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Fig. 3 Synfire neuronal activity showing power-law distributions. In
total, 1,000 assemblies were embedded. (a, c) The initial excitatory-
cell layer of a relatively short or a relatively long synfire chain was
activated by a transient input. The embedded excitatory cell assemblies
are shown by gray dots, while the evoked spikes are shown by black
dots. (b, d) The neuronal activities propagating through the chains are
shown by the sum of excitatory-neuron spikes weighted by exponential
factors with a decay constant of 2 ms. The manipulation is almost
equivalent to counting the number of spikes in each time bin defined
by the time constant. (e) The membrane potentials of three excitatory
neurons (upper) and an inhibitory neuron (lower) during the avalanche-
like activity

size of the preceding layer during the network construction
(Fig. 4(a), solid curve). If, however, the mean is fixed at a
constant value, the distribution of the avalanche size drops off
exponentially without exhibiting a power law (Fig. 4(a), gray
curve). By contrast, the lifetime distribution deviates from
a power law of exponent − 2 in both construction methods,
especially in the region of short life times (Fig. 4(b), solid
and gray curves). To investigate the deviations more closely,
we improved the statistics of sampling the lifetime by solv-
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Fig. 4 Power-law distributions of neuronal activity propagating
through the synfire chains constructed through the Gaussian-based
wiring processes. Parameters were set as N = 10,000, M = 200,
m = 20, σ = 4, and 1,000 cell assemblies were embedded. (a) The
number of neurons activated in each propagation event is distributed
according to a power law of exponent − 3/2 for a network constructed
under the condition 〈nk+1〉 = nk (solid curve), where nk is the size
of the k-th layer and 〈. . .〉 means an expected value. The dashed line
designates the desired exponent. If the sizes of the individual layers are
independently determined, the distribution shows no power law (gray
curve). (b) The lifetime distributions obtained with (solid curve) and
without (gray curve) the condition 〈nk+1〉 = nk. The solid curve devi-
ates from the desired power law of exponent − 2 (dashed line) in the
domain of short lifetimes. A theoretical curve is obtained for a very
large-scale network constructed under 〈nk+1〉 = nk by solving Eq. (1b)
(gray dotted curve)

ing the discrete-time stochastic equations equivalent to the
present wiring process (see Eq. (2) shown later). The results
for the lifetime distribution show that the desired exponent
can be obtained only in the domain of much longer life-
times, but not for short ones (Fig. 4(b), dotted gray curve:
the exponential cut-off is due to the finite-size effect).

In general, power laws are addressed in nonlinear dy-
namical systems only in the asymptotic domains of physical
parameters, which in the present study correspond to large
avalanche sizes and long lifetimes. Therefore, the above re-
sults may not be surprising. The power law, however, has
been revealed in experiments even at rather short lifetimes
( < 20–30 ms). It is therefore unlikely that the network mod-
els obtained with the Gaussian-based wiring process are
consistent with the experimental finding. Below, we show
a possible improvement of the present network model.
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An improved procedure of neuronal wiring

The Gaussian probability distributions produce both posi-
tive and negative fluctuations in the layer size in a symmetric
manner. Therefore, the probability that the construction pro-
cess is terminated within short steps is not so small, imply-
ing that the lifetime distribution may be biased towards short
lifetimes. To reduce such a bias, we adopted the gamma dis-
tribution for embedding the chains of cell assemblies, since
the degree of asymmetry with respect to the mean can be
modified by changing the value of α (Fig. 5(a)). We found
that the resultant distribution of the avalanche size exhibits
a power law of exponent − 3/2 at an arbitrary value of α,
as in the previous case (Figs. 5(b) and (d)). By contrast,
the distribution of the avalanche lifetime and its exponent in
the domain of short lifetimes can significantly vary with the
value of α (Fig. 5(c)). We can find such an adequate value of
α ( ≈ 0.1) that sets the exponent equal to − 2 (Fig. 5(d): also
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distribution exhibits a power law of exponent − 2 (dashed line) even at
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see Fig. 5(c), solid curve). Thus, the behavior of the power-
law distribution at short lifetimes can be improved, if the
stochastic fluctuations appear asymmetrically in the wiring
process.

The value of σ determines the degree to which the size
of consecutive layers can vary. This parameter also influ-
ences the structure of the embedded synfire chains. If σ is
large, the layer size chosen during the stochastic wiring pro-
cess can easily reach the lower bound. In such a situation,
large chains can rarely appear during the wiring process,
and neuronal avalanches tend to show an exponential cut-
off at relatively small sizes (Fig. 6(a)). On the contrary, if
σ is small, the tail of the power law domain extends to
rather large avalanche sizes, since such a wiring process can
easily generate extremely large-scale synfire chains. This
tendency is particularly strong if the gamma distribution
is used for neuronal wiring (Fig. 6(b)). However, the pro-
cess with small σ fails to generate small chains, as under-
stood from the large dips that appear for σ = 4 and 8 at
avalanche sizes smaller than 102 (Fig. 6(a)). Therefore, the
value of σ needs to be adequately adjusted in order to em-
bed a rich variety of synfire chains into a finite-size neuron
pool.
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Capacity for embedding cell assemblies

The stability of synchronous activities propagating through
the individual chains crucially depends on several factors.
Since the synfire chains mutually interact through recurrent
synaptic connections, and since the number of such connec-
tions is increased with the number of chains, there exists an
upper bound for the total number of synfire chains that can
be embedded in a given neuron pool. In the present simula-
tions, we were unable to embed more than about 400 chains
into a network of 10,000 excitatory and 2,500 inhibitory neu-
rons. If we try to embed more chains, synchronous activity
first fails to propagate through relatively long chains, pre-
sumably due to a loss of the sparse connectivity (Rolls and
Treves, 1998; Brunel, 2000). Therefore, the power law starts
to break in the regime of large-scale avalanche-like activity
(Fig. 7(a)) in which synchronous activity can easily disperse
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to multiple synfire chains. The runaway network excitation,
however, is eventually terminated by the feedback from in-
hibitory neurons (Fig. 7(b)). The upper bound for the number
of embeddable chains is the cost paid for the multiple recruit-
ments of individual neurons for different cell assemblies.
We can avoid unstable activity propagations by constructing
mutually non-overlapping cell assemblies. Such an exclusive
wiring rule, however, seems unrealistic from a viewpoint of
cortical neurobiology (Abeles, 1991). The advantage of the
multiple recruitments is that they give an economical repre-
sentation of cortical cell assemblies, producing more synfire
chains with fewer neurons (see Fig. 2(c)).

Inhibition is crucial for stabilizing the avalanche-like syn-
chronous activity, especially if the neuron pool embeds an al-
most maximal number of synfire chains. To see the role of in-
hibition in the present network, we reduced the conductance
of all GABAergic synapses by about 30% or more. The resul-
tant distributions of the avalanche size show bimodal peaks,
and its power-law behaving part exhibits a steeper slope with
an exponent smaller than − 3/2 (Fig. 7(c)). These changes in
the profile are consistent with those measured in experiments
after the blockade of GABAergic synaptic transmissions by
picrotoxin (Beggs and Plenz, 2003). To see how the blockade
of inhibition changes the activity propagation, we plotted the
time course of coarse-grained spiking activity in Fig. 7(d).
Typically, synchronous activity stably propagates through an
initial few layers, but it rapidly overflows the synfire chain
until an increasing inhibitory feedback abruptly terminates

� Fig. 7 Dynamical properties of the present network model. (a) Ca-
pacity for embedding chains of cell assemblies. The avalanche size
distribution was calculated in a network with 400, 500 or 700 chains
(curves from below). The dashed line represents an exponent of − 3/2.
The distributions for 500- and 700-chain networks display notable peaks
at a chain size of about 800 cells (array), implying that the avalanche-
like activity in these networks cannot propagate stably through long
chains greater than this size. The results imply that the stability of the
avalanche-like activity allows us to embed only about 400 chains into
the present neuron pool. (b) The population activities are shown for
excitatory (upper) and inhibitory (lower) neurons during activation of a
synfire chain. In total, 400 (black) or 700 (gray) chains were embedded
below or beyond the critical storage capacity, respectively. (c) Reduc-
tion of inhibitory synaptic transmissions deteriorates the power-law size
distribution: gIE = 0.02 (gray) and 0.015 (black). As inhibitory connec-
tions were weakened, the distribution exhibited an exponential-like be-
havior in the region of avalanche sizes smaller than 103 (black). In addi-
tion, the size distribution developed a hump at relatively large avalanche
sizes (gray and black) since most of large avalanches lost the stability.
The dashed line represents an exponent of − 3/2. (d) The propagat-
ing activities of excitatory (upper) and inhibitory (lower) neurons are
shown at a normal (gIE = 0.03: black) or a reduced (gIE = 0.015: gray)
magnitude of the inhibitory synaptic conductance. (e) The avalanche-
size distributions were tested for propagations of spike bursts, with the
previous (gray solid) or slightly reduced (black solid) values of synaptic
weights: gEE = 0.1/20 and gEI = 0.07/20. The dashed line indicates a
power of − 3/2. The neuron model was parameterized as follows: (a,
b) = (0.02, 0.2), u was incremented by 2, and the reset potential was
− 50 mV.
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the network activity. Since the runaway activity occurs more
often in larger chains, the size distribution exhibits a hump
in the domain of large-scale avalanches (Fig. 7(c)).

To see whether the intrinsic properties of neurons may
affect the stable activity propagation, we changed the val-
ues of model parameters such that the neurons displayed
burst of spikes. At a first glance, the changes in the intrinsic
properties spoiled the power laws (Fig. 7(e)). However, we
could easily recover them by slightly reducing the weights
of excitatory synapses. Therefore, the intrinsic properties
are not really crucial for the stability of the avalanche–like
activities in this model. Our model, with this result, shows
an interesting contrast with other mechanisms of neuronal
avalanches in which the neuronal dynamics plays an essential
role.

Relationship to critical branching process

Why does our network model exhibit the power laws? We
can achieve some insight into the mechanism by analyzing
the stochastic equation that describes the present process of
neuronal wiring and by comparing it with that describing the
critical branching process. We note that the number of active
nodes at each branching step obeys the following stochastic
equations in the critical branching process with Q branches
per ascendant (namely, each ascendant node has Q descen-
dant nodes and an active ascendant activates each descendant
with a probability of 1/Q):

〈nk+1〉nk=n = n, var(nk+1)nk=n = (1 − Q−1)n,

(k = 1, 2, . . .) (1a)

where, 〈· · ·〉nk=n represents an average under the condition
that the number of excitatory neurons in the preceding layer
is n, and the second equation represents the variance. The
stochastic variables nk take only integer values and the ini-
tial condition is given as n1 = 1. We can analytically prove
that Eq. (1a) displays the power laws with these conditions
(Harris, 1989). In the domain where nk is sufficiently large,
the equations can be approximated as

nk+1 = nk +
√

(1 − Q−1)nkξk . (k = 1, 2, . . .) (1b)

Here, {ξk} (k = 1, 2,. . .) represents a set of independent
normalized Gaussian noise with mean zero, and the process
is terminated if nk reaches zero or exceeds a sufficiently
large cut-off value. The size of a branching event is defined
as the summation

∑
k nk taken over all steps preceding the

termination of the event.
Similarly, the present wiring process (CWP) can be de-

scribed as the following Markov stochastic process with re-
spect to ñk ( ≡ nk/m), the normalized size of the k-th layer

of a synfire chain:

ñk+1 = ñk + σ

√
ñk

/
m Xk . (k = 1, 2, . . .) (2)

Here, the initial condition is given as ñ1 = 1. The noise
{Xk} is taken to be the Gaussian or the gamma distribution
used in constructing synfire chains, with the variance nor-
malized to be unity. Thus, we find that the two processes
are governed by quite similar stochastic evolutionary rule.
In fact, we can show by numerically solving Eqs. (1b) and
(2) that both stochastic processes display power laws of ex-
ponent -3/2 and -2 in the distributions of the event size and
lifetime (Fig. 1(a)). However, the figure shows that only the
process (2) with a particular gamma distribution (α = 0.1)
can produce the desired power law in the domain of short
lifetimes.

In addition to the deviations at short lifetimes, CBPA,
where activity propagation is implemented by a cortical
neuronal network may suffer other difficulties. Below, we
present two typical examples. In Fig. 1(b), we modified the
original critical branching process such that activation of a
descendant required activation of more than one ascendant.
This should be the case if each node in the signaling cascade
corresponds to a single neuron. We find that the size distribu-
tion shows no power law in such cases. Next, we represented
each node of the signaling cascade with multiple neuron-like
subunits (Fig. 1(c)). Each ascendant node projected to two
descendant nodes and, as in the critical branching process, a
single ascendant node could activate a descendant node. The
probability of activation was adjusted such that an active
ascendant activated only one descendant node on average
(see the figure legend). As far as the projections to different
descendant nodes are highly selective, the size distribution
exhibits the desired power law. If, however, small fractions
of the projections are intermingled, the power law easily dis-
appears. Thus, CBPA implemented by the signaling cascade
of neuron-like elements is structurally unstable.

Discussion

The power-law statistics of spontaneous synchronous corti-
cal activity have led us to formulate the CWP, a neuronal
wiring rule that develops synaptic connections in a large
population of excitatory and inhibitory neurons. The CWP
determines the topological structure of the local cortical cir-
cuit model. We have demonstrated that the CWP is essential
for the power-law statistics of synchronous activity prop-
agating through the developed feedforward networks. We
have revealed that the exponent of the power-law lifetime
distribution is sensitive to the statistical rule governing the
neuronal wiring, whereas the exponent of the size distri-
bution is much more robust. The number of synfire chains

Springer



310 J Comput Neurosci (2007) 22:301–312

embeddable into a given neuron pool is limited by the sta-
bility of the avalanche-like activity, and inhibitory neurons
significantly enhance this stability.

Critical process in activity propagation vs. neuronal wiring

The activity propagation obeying the critical branching pro-
cess (CBPA) was suggested as a mechanism of neuronal
avalanches (Beggs and Plenz, 2003), and a simple growth
model to develop such an activity propagation was re-
cently proposed (Abbott and Rohrkemper, 2006). In fact, a
power law of exponent − 3/2 was analytically derived in the
avalanche dynamics of a globally coupled system of non-
leaky integrate-and-fire units (Eurich et al., 2002; Levina
et al., 2006). However, a similar system of leaky integrate-
and-fire neurons exhibits the power law only if the leak time
constant is much longer than the typical time scale of ac-
tivity propagation (Corral et al., 1995). Moreover, we have
proven it difficult to formulate the avalanche dynamics with
neuron-like processing units. To obtain the power laws, cell
assemblies should have no mutual overlaps (Fig. 1). How-
ever, such an exclusive subnetwork organization seems to
be unrealistic. We note that here the causes of the difficulty
are not only fine-tuning of synaptic weights, but also the
formation of highly exclusive cell assemblies. Therefore,
learning rule may not resolve the difficulty in the scenario
that neuronal avalanches emerge from the critical neuronal
dynamics.

By contrast, we propose that a critical process should
govern the developmental process of neuronal wiring among
cortical neurons (CWP), and that the mathematical proce-
dure underlying this process should be similar to that of
the branching process. According to this view, neuronal
avalanches and their power-law distributions reflect the pre-
dominantly feedforward structure and the same statistical
distributions of thus developed local cortical networks, re-
spectively. The core of the stochastic wiring process is that
it attempts to equate the size of a succeeding layer to that
of the current layer (i.e., 〈nk+1〉 = nk) in constructing each
synfire chain (Fig. 4). We have analyzed how the power laws
are affected by the details of this stochastic wiring rule (Fig.
5).

The essential novelty of our results is that they explain
the mechanism of neuronal avalanches without relying on
the neuronal dynamics. Actually, we have shown that the
stability and power-law statistics of the avalanche-like ac-
tivities depend solely on the special topology of neuronal
wiring, but not much on the neuronal dynamics (Fig. 7(e)).
In fact, neuronal avalanches were observed in acute slices ob-
tained from the rat brain of 4-8 postnatal weeks (Beggs and
Plenz, 2003), which were just within the peak critical period
of the development of cortical circuits (Mataga et al., 2004;
Hensch and Stryker, 2004). Our results suggest that neuronal

wiring with the proposed topology should be developed in
cortical slice cultures during the critical period.

Lifetime vs. size distributions of avalanche-like neuronal
activities

We have tested the power-law distributions of the avalanche
size and lifetime in neuronal networks constructed with var-
ious probability distributions of the consecutive layer sizes.
The distribution of the avalanche size exhibits a power of
− 3/2, if the mean of such a probability distribution coin-
cides with the size of the preceding layer during the construc-
tion process (Figs. 4(a) and 5(b)). The exponent appears to
be quite universal across different probability distributions.
Similarly, the lifetime distribution generally displays a power
law of exponent − 2 in the asymptotic region of long life-
times ( > several seconds). At short lifetimes, however, the
distribution in general shows non-negligible deviations from
the power law (Fig. 4(b)). Our model has shown that the
gamma distribution-based wiring process with an adequate
value of α ( ≈ 0.1) can replicate the desirable exponent of
the lifetime distribution (Figs. 5(c) and (d)). In contrast, it
seems difficult to account for the experimental observation
by the Gaussian-based neuronal wiring processes. Thus, the
lifetime distributions of neuronal avalanches may carry rich
information about the local cortical circuit structure.

Capacity of embedded chains and roles of interneurons

The neuronal wiring proposed here generates predominantly
feedforward, multiply overlapping chains of cell assemblies
(Abeles, 1991) in a manner consistent with recent experi-
mental findings. A considerable number of recurrent synaptic
connections are also created, which may destroy the stability
of synchronous neuronal activity (Aviel et al., 2005). In fact,
a neuron pool of given size can accommodate only a lim-
ited number of synfire chains, since embedding more chains
creates more recurrent synaptic connections within and be-
tween them. In fact, the entangled synfire chains constructed
with N = 10,000 and M = 200 can store about 1,000 cell as-
semblies, or about 400 synfire chains. If this upper bound is
not obeyed, synchronous neuronal activity cannot propagate
stably through a chain, especially a long one (Figs. 7(a)–(c)).
Thus, the present neuronal network somewhat resembles the
associative memory model of binary neurons, in which the
crosstalk between memorized, stationary or temporal, activ-
ity patterns severely limits the storage capacity (Hopfield,
1982; Amit et al., 1985; Amari, 1988; Sompolinsky and
Kanter, 1986; Shiino and Fukai, 1993).

Our model demonstrates that inhibitory interneurons play
a crucial role in improving the stability of synchronous ac-
tivity propagating through a long chain (Aviel et al., 2005;
Moradi, 2004). The reduction of inhibitory synapses results
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in runaway network excitation in our model, and produces
a hump in the distribution of the avalanche size (Fig. 7(c)
and (d)). Such a hump was actually observed in experiments
when GABAA receptor antagonist picrotoxin was applied to
neocortical slices (Beggs and Plenz, 2003). In addition, the
enhanced stability greatly contributes to the storage ability
of the proposed network model: our prototype model with
10,000 excitatory neurons and no inhibitory neurons could
embed at most 200 chains, which correspond to about the
half of the present storage capacity (Teramae and Fukai,
2005). Interneurons might also provide a mechanism to limit
the size of a synchronously activated cell assembly (i.e., the
value of M). This possibility, however, is open for further
investigations.

Implications in cortical neurobiology

It has been shown that layer 2/3 cortical neurons form rel-
atively independent, fine-scale subnetworks of selectively
interconnected neurons (Yoshimura et al., 2005). Adjacent
layer 2/3 pyramidal neurons often share common excita-
tory input within layer 2/3 and from layer 4 when they are
connected to each other. By contrast, layer 2/3 neurons share
inhibitory input from layers 2/3 and 4 regardless of the synap-
tic contacts between them. These patterns of neuronal wiring
resemble those proposed in this modeling study. It may be
the case that multiple entangled synfire chains characterize
the network topology of layer 2/3 local cortical circuits.

We note that the power laws in neuronal avalanches do
not imply that the underlying network should be scale-free.
The number of links at each node exhibits a power-law distri-
bution in a scale-free network (Barabasi and Albert, 1999).
However, this does not mean that the synchronous activities
propagating through such a network also obeys power laws.
In fact, the number of synaptic connections obeys a Poisson
distribution in this model (Fig. 2(c)), since the small number
of neurons belonging to each cell assembly were randomly
chosen from a large neuron pool.

A major limitation of our model is that it does not clar-
ify the biological mechanisms to achieve the proposed neu-
ronal wiring in the developing cortical circuits (Peinado,
2000; Khazipov et al., 2004). The feedforward synaptic con-
nections may be self-organized by spike-timing-dependent
plasticity (Levy et al., 2001; Kitano et al., 2002; Izhikevich
et al., 2004), which strengthens or weakens pyramidal-to-
pyramidal synapses in a temporally asymmetric manner (Bi
and Poo, 2001). However, the proposed wiring rule requires
additional mechanisms to regulate the size of each cell as-
sembly relative to that of the preceding one. This regulation
is possibly activity-dependent, as the total activity in a cell
assembly increases in proportion to its size. The processes
of axon branching and synapse formation are known to be
activity-dependent (Alsina et al., 2001; Uesaka et al., 2005),

but little is known about how the spatial pattern of neu-
ronal wiring is determined in these processes. Another lim-
itation of our model is that it has no mechanism to generate
the avalanche-like activity sequences spontaneously. These
points remain open for future studies.

Appendix

The average number of synaptic connections
In the proposed model, the number of excitatory connec-

tions included in the entire network is approximately given
as Pms under sparseness assumption where we can neglect a
small overlap between different chains ( P, s � N ), where
P is the total number of synfire chains, m is the number of
synaptic projections to each cell, and s is the average size of
these chains. The connection probability is therefore given
as c = Pms

N 2 . For a chain of average size s, the product of
the probability c and the number of possible neuron pairs s2

gives the average number of non-purely feedforward (recur-
rent) connections in this chain, Pms3

N 2 . We note that the ratio
of the number of recurrent connections to that of purely feed-
forward connections in this chain is Pms3

N 2 /ms = P
(

s
N

)2
. We

can similarly obtain the same formula for the average num-
ber of synaptic connections between each pair of different
chains. This implies that the degree of interferences between
synfire chains increases with P .
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