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Abstract

Local cortical circuits appear highly non-random, but the underlying connectivity rule remains elusive. Here, we analyze
experimental data observed in layer 5 of rat neocortex and suggest a model for connectivity from which emerge essential
observed non-random features of both wiring and weighting. These features include lognormal distributions of synaptic
connection strength, anatomical clustering, and strong correlations between clustering and connection strength. Our model
predicts that cortical microcircuits contain large groups of densely connected neurons which we call clusters. We show that
such a cluster contains about one fifth of all excitatory neurons of a circuit which are very densely connected with stronger
than average synapses. We demonstrate that such clustering plays an important role in the network dynamics, namely, it
creates bistable neural spiking in small cortical circuits. Furthermore, introducing local clustering in large-scale networks
leads to the emergence of various patterns of persistent local activity in an ongoing network activity. Thus, our results may
bridge a gap between anatomical structure and persistent activity observed during working memory and other cognitive
processes.
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Introduction

The organization of neuronal wiring determines the flow of

information in neural circuits and hence has significant implica-

tions for their function. Cortical neurons often appear to be

sparsely connected with a low probability of synaptic connection

[1–7], suggesting random organization [8]. However, several

recent studies reveal nonrandom features of neuronal wiring in

cortical circuits including a non-Gaussian distribution of synaptic

weights, and non-random patterns of neuronal wiring [2,9–15].

The first feature observed is a long heavy tail in the distribution

of excitatory postsynaptic potentials (EPSPs) between cortical

neurons [10,13,16]. This implies that a small number of very

strong connections in local cortical circuits carry a large

proportion of the total synaptic weight on a neuron, while the

majority of synapses are weak [6,17]. Such long-tailed (typically

lognormal) EPSP distributions of AMPA receptor containing

synapses generate spontaneous reverberating activity optimal for

spike-based communications by stochastic resonance [18].

The second feature is the highly nonrandom structure of

synaptic connections between cortical neurons. The statistics of

cortical circuit connectivity have been shown to strongly differ

from that of random networks on both local and global scales. In

particular, there is evidence that neurons chosen randomly from

local cortical circuits exhibit certain connection patterns, or motifs,

significantly more often than expected by chance [10,15,19]. The

third nontrivial feature is correlation between the connection

probabilities and synaptic weights. In short, stronger connections

are more likely to be found between neurons belonging to certain

network motifs [10,15].

Nonrandom features of synaptic connections create additional

complexity in the structure and dynamics of neural networks

[12,16,18,20–32]. However, the precise connectivity structure of

cortical circuits remains elusive. Here, we derive a computational

model of network connectivity from the known non-random

features of cortical circuits. Our model predicts the typical size of a

cluster and defines the statistical relationship between the wiring

and weighting.

We then show the significance of such clustering for cortical

dynamics both in a small network with a single cluster and a large-

scale network with many clusters. In these networks, the clustering

of connections is crucial for generating bistable states of neurons

belonging to a cluster, which in turn create a rich repertoire of

dynamical behavior useful for various types of memory storage.

Results

Our study is primarily focused on local neuronal circuits of

about hundred micrometers in size residing in rat visual cortex.

The connection probability among adjacent neurons does not
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depend strongly on the distance between neurons in the above

spatial range, so in our approach we do not consider positions of

the neurons. The simplest and most commonly used model for

sparsely connected networks is the so-called ‘‘random network’’

(RN) model [33], in which the probability of connections between

two arbitrarily chosen neurons is a single constant that doesn’t

depend on neuron identity or its location. However, experimental

observations suggest that a local cortical network on the scale of

about hundred micrometers already demonstrates strong evidence

of clustering [10,15]. Therefore we extended the random network

approach to construct a network with clusters (hereafter, we call it

‘‘NC’’) in which synaptic connections distribute heterogeneously

across the network and form a certain number of clustered neuron

groups. The rest of neurons in NC do not belong to any cluster.

This results in a statistically significant deviation of NC from a

random network with the same mean connection probability.

Sets of Parameter Values Consistent with Experimental
Data

Our model is defined as a network of N neurons that contains K

clusters with M neurons per cluster (Fig. 1A). Note that KM can be

smaller than N, i.e. some neurons of the network may not belong

to any of the clusters. The probability of two units being connected

equals c2 if they belong to the same cluster and c1 otherwise (if they

belong to different clusters, or one of them or both do not belong

to any cluster). The statistical properties of a NC are fully

determined by the constants c1 and c2, the number of the clusters K

and the relative size of a cluster b = M/N. It is also convenient to

define the coefficient a = Kb2, which is the probability that two

randomly selected units are both taken from any one of the K

clusters. All other characteristics of the network may be calculated

through these parameters. For example, one can calculate the

overall connection probability c, the overrepresentation coefficient

R of reciprocal connections, or the overrepresentation coefficient T

of triangle motifs (see Materials and Methods).

We examined whether the model can describe experimentally

observed nonrandom properties of the connectivity of cortical

networks. We first adjusted the values of parameters in the NC

model according to the experimental data of local circuits’

connectivity in layer 5 of rat visual cortex [10], and then tested

the resultant model on other data from layer 5 of rat

somatosensory cortex [15]. From the data reported in the former

study one can calculate that the average probability of finding a

synaptic connection between a neuron pair was c = 0.1157, the

coefficient of the overrepresentation of reciprocal connections was

R = 4.025, and the coefficient of the overrepresentation of triangles

was T = 2.73.

By analyzing the statistical properties of synaptic connections in

the NC model, we obtained value sets of model parameters that

agree with the experimental observations (Materials and Methods).

We found six possible sets of parameter values that meet all the

criteria set by experiment. These sets correspond to different

numbers of clusters, K = 1, 2, … 6 (Fig. 1B, filled circles; see also

Fig. S2). We found that no other sets of parameter values for

statistical properties consistent with experimental data. The origin

of several sufficient parameter sets can be understood as follows.

Fixing of the values of c, R and T give three conditions for four

system parameters c1, c2, a and b, which defines a line in the 4D

parameter space. The condition that K = a/b2 is an integer

specifies a discrete set of points on this line, while the inequality

Kb,1 allows just a finite number (namely six) of these points. The

latter inequality implies that the total number of neurons

belonging to the clusters should not exceed the total number of

neurons in the entire network.

Our model of clustered connections is based on in vitro data

recorded from slice preparations, in which some fraction e (,1) of

synaptic connections could be severed. We simulated whether this

loss of connections significantly affects the above results. For this

purpose, we estimated the changes in the circuit connectivity

induced by the loss of connections and derived the actual values of

network parameters for given value of e (Materials and Methods).

For example, when e = 10%, we found five possible sets of

parameters corresponding to K = 1, 2, …, 5 (Fig. 1B, empty

circles). As a further analysis will show later, the most important

parameter set is the one corresponding to K = 1, which does not

change much after taking into account the connections loss. Thus,

we may conclude that the loss of connections in the order of 10%

would not significantly change the present results.

Long-tailed Distributions of Synaptic Weights
Next, we considered what constitutes a likely distribution of

synaptic weights within the network. The EPSP distribution can be

described with a connectivity matrix W, in which element Wij

remains zero in the absence of a connection from neuron i to

neuron j, while in the presence of this connection Wij (.0)

coincides with its weight. In reality, a neuron pair has multiple

synaptic contacts and the amplitude of EPSP represents the sum of

the contributions from the multiple synapses. The value of Wij

should be interpreted as this sum in our model. Several

experiments have shown that the amplitude distribution of EPSPs

in cortical circuits is not Gaussian, but closer to a lognormal

distribution with a long tail, where the mean and variance were

determined to be m = 0.702 [mV] and s = 0.9355 [mV], respec-

tively [10]. Similar long-tailed distributions are known in mouse

somatosensory cortex [13] and rat hippocampus [16]. Further-

more, experiments reported that the synaptic weights are positively

correlated within certain motifs such as reciprocally connected

pairs and neuronal triangles. In general, stronger connections are

more often clustered than weaker ones. The experimental

evidence for this feature comes from the observation that the

overrepresentations of these highly connected motifs increase with

an increase in the threshold value [10,15].

To represent the experimentally observed features, we assume

that the distributions of synaptic weights are different between the

inside and outside the clusters, where ‘‘inside’’ means a connection

linking two neurons belonging to the same cluster, and ‘‘outside’’

means any other connection. Specifically, the two distributions of

nonzero synaptic weights were described by different cumulative

distribution functions F1,2(w) = Pr (Wij,w) of the EPSP amplitude

w, where indices 1 and 2 refer to the outside and inside of the

clusters, respectively. The weight distributions f1,2(w) are given as

the derivatives of the cumulative functions with respect to w. Given

these functions one can calculate the overrepresentation r(w) of

reciprocal connections for connections greater than the threshold

w. Conversely, by using experimental data for r(w), we can

explicitly determine the functions F1(w) and F2(w) that replicate the

threshold-dependent statistics of reciprocal connections observed

in experiments (see Materials and Methods for the detailed

mathematical procedure).

Figure 1C shows the experimentally obtained data for r(w) [10]

and the curves fitted by NC for the six sets of parameters obtained

earlier. Note that the maximal value of the overrepresentation of

reciprocal connections in our model depends on a as rmax = 1/a.

The values of a are different among the six parameter sets, and this

explains why different levels of r are reachable for different K. The

maximum experimentally observed value is rmax<22. Among the

six sets of parameter values found earlier, the set corresponding to

K = 1 gives the best fit with rmax<20.3, while all others yield
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rmax,15. Therefore, our model optimally accounts for all the

experimental observations with the set of parameter values K = 1,

b = 0.222, c1 = 0.07 and c2 = 1, and this set is employed for further

analyses below. The corresponding probability density functions

are plotted in Fig. 1D, which shows that strong connections are

more represented inside the cluster, while weaker ones are more

likely to be found outside. The threshold between ‘‘weak’’ and

‘‘strong’’ connections may be defined as w0<1.12 [mV], at which

the two probability densities f1 and f2 give the same value. These

density functions were constructed such that the total probability

density f(w) coincides with a lognormal distribution (Materials and

Methods).

However, we should keep in mind that these parameter values

were derived from a limited amount of experimental data. In

particular, a single data point for w.1.5 [mV] in Fig. 1C was

crucial for choosing the present value of K and more data points

are necessary for confirming this choice. The parameter set with

K = 2 is suitable as well for the replication of the observed

dependency r(w) for all data points except the last one. This

parameter set describes a network with two clusters, which are a

little smaller than the cluster obtained for K = 1 (b = 0.18) and their

membership neurons are interconnected densely but not all-to-all

(c2 = 0.88). Anyway, our connectivity model predicts that local

microcircuits in the neocortex of the rat contain clusters

comprising approximately one fifth of excitatory neurons. The

neurons in the cluster are very densely connected to each other,

while the rest of the connections in the network are sparse.

Excitatory Connection Matrix
We numerically generated connection matrices for excitatory

neurons according to our model one of which is represented in

Fig. 2A. Since our model describes small local cortical domains,

our network consisted of N = 80 excitatory neurons. This number

was chosen partly because the minimal functional module of

neocortex, the so-called minicolumn, is considered to comprise 80

to 100 neurons [34–37]. This number also roughly corresponds to

the number of neurons in a box with 100 micrometer side of the

neocortex. Since the density of neurons is 3,66105/mm3 in the

rat cortex, such a cortical volume contains about 300,600

neurons [3,38–43]. However, another estimate gives a smaller

number of about 50 [44].

To visualize the small-scale network, we arranged the 80

neurons in such a way that the first (M = bN = ) 18 of them

belonged to the cluster. The connections within the cluster are

dense and strong, while all the rest of the connections are sparse

and weak. Figure 2B presents the distribution of nonzero synaptic

weights in the entire network. Black dots stand for the overall

weight distribution of the network, which is close to a lognormal fit

f (w)~ exp ln w{mð Þ2=2s2
h i

=
ffiffiffiffiffiffi
2p
p

sw, with the mean m = 0.702

and variance s = 0.9355. Red dots represent the distribution of

synaptic weights within the cluster, which clarifies that stronger

connections are more often found among them. As indicated by

two vertical lines, the mean weight of the connections is larger

inside the cluster as well.

Figure 1. Structure and parameters of the model. A, Our NC model is schematically illustrated. The connection probability is higher in clusters
(c2) than outside (c1). Connections inside and outside clusters are shown in red and blue, respectively. B, The parameter sets predicted by the model
are depicted on the plane of a and b with filled circles. The numbers near the circles correspond to the values of K. Empty circles depict the sets
obtained under the assumption of 10% connections loss in slice preparations. C, The experimentally observed threshold-dependence of the
overrepresentation of reciprocal connections is fitted by models for different values of K. The best fit with K = 1 is red, the first after best fit with K = 2
is blue, the other fits are black. The number near each data point shows the number of the corresponding connections obtained by experiment. D,
The probability densities of synaptic weights are shown for K = 1: f2(w) stands for connections inside the cluster and f1(w) for all the other connections,
and f(w) for all connections in the entire network. The two distributions have identical values, i.e., f1(w0) = f2(w0), at the threshold value of
w0 = 1.12 [mV].
doi:10.1371/journal.pone.0094292.g001
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The generated connection matrix involves overrepresented two-

neuron and three-neuron network motifs. The overrepresentation

coefficients obtained numerically in the network are plotted for

various thresholds in Fig. 2C for reciprocal connections and in

Fig. 2D for triangle motifs. The experimental data [10] and the

theoretical curves are also plotted in the same axis for comparison.

The characteristics of the small network generated by our model

were in good agreement with those of the experimental data. This

coincidence is not surprising for the reciprocal connections

because we calculated the weight distributions of our model based

on the data. However, the quantitative agreement for triangle

motifs was unexpected because we did not make use of the

statistical data for triangles in adjusting parameter values of the

model. It is important that the observed overrepresentation of

triangles is not just the reflection of the overrepresentation of

reciprocal connections (see Materials and Methods), so this

agreement between the model and experimental data supports

the plausibility of our model.

Consistency of the Connectivity Model with Other
Experimental Data

Our model of synaptic connectivity was derived mainly through

statistical data obtained from the layer 5 of rat visual cortex.

However, the presence of clustered neurons or subnetworks has

been reported in other layers, areas and species including layer 5

of rat somatosensory cortex [2,15], layer 2/3 of rat visual cortex

[11], and layer 2/3 of mouse barrel cortex [14]. In particular,

various network parameters were measured in somatosensory

cortex by Perin et al. [15] demonstrating significant overrepre-

sentations of highly connected motifs for larger neuron groups

than those reported in ref. [10]. Our model qualitatively replicates

these results as shown in Fig. 3A. Supposing a random

connectivity in the network, we obtain the binomial distribution

of the number of connections (gray curve). Adding of a cluster of

densely connected neurons increases the probability to find a

group with more connections inside it, uplifting the distribution for

large numbers of connections (black curve). Thus, the present

clustering well explains the overrepresentations of highly connect-

ed groups.

Perin et al. also found an interesting relationship between the

number of connections among a group of six neurons and the

average synaptic weight for the group: the synaptic weight grows

with the number of connections and almost saturates after 20% of

possible connections are formed. We examined whether our

network model with a cluster is consistent with this saturating

property of higher network motifs by carrying out a similar

analysis in groups of six neurons that were chosen randomly from

our model. As shown in Fig. 3B, the average EPSP amplitude for a

group depends on the number of connections among six neurons

in the group, and this function saturates in a qualitatively similar

fashion to what was described in ref. [15]. Insets show the resultant

distributions of the EPSP amplitude in neuron groups with

different numbers of connections.

Pajevic and Plenz also analyzed the organization of strong

connections in various complex real-world networks including

local cortical networks [31]. They found that in the latter ones the

clustering coefficient of connections is positively correlated with

Figure 2. The properties of the network generated by the developed algorithm. A, An example of connectivity matrix for 80 excitatory
neurons containing a single cluster is shown. The weight of each connection is presented in pseudo color. B, The probability density of nonzero
weights distribution is shown in logarithmic scales. Black circles show the weight distribution obtained for the entire network and red circles show
the distribution inside the cluster. Solid curve represents a lognormal fit to the data points, black vertical line corresponds to the mean weight of
connections for the entire network and red line corresponds to the mean weight inside the cluster. C, The coefficients of the overrepresentation of
reciprocal connections r versus threshold value w are shown. Blue squares are obtained in the model network and black circles are taken from the
experimental data shown in ref. [10], where each number shows the number of the corresponding connections obtained by experiment. Red line is
calculated by formula (7) for the parameter choice of K = 1. D, The coefficients of the overrepresentation of triangles t(w) are shown. Symbols are
used in the same manner as in the previous plot.
doi:10.1371/journal.pone.0094292.g002

Dense Neuron Clustering Explains Connectivity Statistics

PLOS ONE | www.plosone.org 4 April 2014 | Volume 9 | Issue 4 | e94292



their weight rank. We also calculated the clustering coefficient of

synaptic connections in our model and found that it is positively

correlated with the EPSP amplitude with a correlation coefficient

ranging between 0.52 and 0.55.

Bistable Dynamics of the Network with a Cluster
In previous sections we have shown that local cortical circuits

are likely to contain relatively large clusters of very densely

connected neurons. Next we explored how these features may

affect circuit dynamics, for which we compared the activity of

model networks with and without the clustering structure. For this

sake we considered (i) the NC with the set of parameter values

described above and (ii) the RN having the same mean connection

probability and EPSP distribution as the NC. Both networks

consisted of 80 excitatory and 20 inhibitory neurons. In both

networks, the mean connection probability of excitatory neurons

c<0.12, and the mean amplitude of nonzero EPSPs w<0.8 [mV].

The NC also contained a cluster of 18 neurons that were fully

connected to each other with the mean strength of w<1.1 [mV].

The overall EPSP distribution in both networks was lognormal,

which was previously demonstrated to enable spontaneous low

rate activity in large-scale networks [18]. However, because the

present network is very small, it is not capable of self-maintained

activity, thus requiring external input. Therefore we introduced

uncorrelated spike inputs to all neurons in the network with

identical statistical characteristics (see Materials and Methods for

the model details).

When weak external noisy input was applied to the RN, all

neurons started to fire irregularly at a low mean frequency of

about 1 Hz. We refer to this regime as the ‘‘low state’’. The

dynamics of the NC also shows a low state similar to that of the

RN. Interestingly, however, the NC had another regime in which

neurons showed firing with a much higher mean frequency of

about several tens of spikes per second. We call this state ‘‘high

state’’. The network state is changed from low to high state by a

brief additional stimulation (Fig. 4A). In the high state the

clustered neurons fire at high rates, while the rest of the network

rarely produces spikes. The firing patterns of the clustered and

non-clustered neurons are irregular and asynchronous, as indicat-

ed by a wide power spectrum without any pronounced peaks (see

Fig. S3).

Importantly, in NC both low and high states are stable, as

illustrated in Fig. 4B, meaning that the network with a cluster

becomes bistable. Neural networks can be bistable without clusters

if the nonlinear response of neurons and the strength of coupling

are adequately tuned. Therefore, clustering is not a necessary

condition for bistability. While the crucial contribution of clusters

to bistability will be shown later in large-scale networks, it is

worthwhile pointing out that the clustering of connections allows

bistability in rather small networks. To show this, we carried out a

parametric study of the NC. We varied the relative cluster size b
and connectivity inside the cluster c2, keeping the average

connectivity (c = 0.1156) and average coupling strength (w = 0.8)

unchanged. For several values of b, we changed c2 from the

minimal value c2 = c (no clustering) to the maximal value c2 = 1

(ultimate clustering) and looked for the minimal network size N

sufficient for the emergence of bistability (Fig. 4C). For b = 0.22

and maximal clustering (c2 = 1), the high state is stable already for

N = 40. At a medium level of clustering (c2 = 0.5) the bistability

requires at least N = 140 neurons. Without clustering (c2 = c), the

bistability emerges only for N.1000. We also obtained similar

results for other values of the relative size of clusters (b = 0.1 and

b = 0.3). Thus, the clustering of connections dramatically reduces

the minimal network size to generate the bistability.

Various Forms of Persistent Activity in Large-scale
Networks with Clusters

As shown above, the clustering of connections makes the activity

of a local cortical circuit bistable. However, local circuits in the

brain do not function in isolation from the adjacent networks, and

the local clustering of synaptic connections may also have

nontrivial effects on large-scale network dynamics. This issue

was previously tested in large-scale networks of autonomously

active spiking neurons [30], and we now tested it in large-scale

networks of (non-autonomous) integrate-and-fire neurons with

clusters. To this end, we introduced multiple clusters into a

network model that was previously constructed to account for

asynchronous irregular firing of cortical neurons at low frequencies

(the mean frequency of 1–2 Hz) [18]. The network consisted of

10000 excitatory neurons and 2000 inhibitory neurons, and

excitatory-to-excitatory connections initially were homogeneous,

sparse, random, and obeyed a lognormal EPSP distribution (see

Materials and Methods for details of the model). To introduce

multiple clusters into the network model, we partitioned it into

smaller subnetworks each consisting of Ns neurons and reorganized

the connections inside each subnetwork according to the NC

model. Therefore, each subnetwork contained bNs (b<0.22)

clustered neurons. The connections between the subnetworks

Figure 3. Statistics of connections in groups of neurons in the
model. A, The expected (black) and observed (red) frequencies of
neuron groups are plotted for given number of connections. Only
groups of 6, 7 and 8 neurons are considered. B, The mean EPSP
amplitude in a group of 6 neurons is plotted as a function of the
number of connections in the group. Insets show the distributions of
the EPSP amplitude in the corresponding groups.
doi:10.1371/journal.pone.0094292.g003
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were not changed. As a result, we obtained a network with local

clusters of densely connected neurons, sparse connectivity on the

global scale and log-normal distribution of EPSPs. The network

received no external background input.

The dynamics of the large-scale network acquires several novel

features after the introduction of local clusters. The network

preserves ability to generate stable low-rate asynchronous irregular

activity without background input. This spontaneous activity is

possible because each neuron receives sufficiently strong recurrent

input in the large-scale network, unlike in the small network

studied above. In addition, the network becomes capable of

demonstrating regimes with localized high-rate activity reminis-

cent of the high state of the small network (Fig. 5). In such a

regime, one or more local circuits may be elevated to the high state

by brief external stimuli and produce spikes at a high rate while

Figure 4. Bistability of the NC dynamics. A, The network switching from the ‘‘low’’ to the ‘‘high’’ state by a transient external simulation. Top:
spike raster of the network, red dots for excitatory and blue dots for inhibitory neurons. The clustered neurons have identities from 1 to K = 18.
Bottom: output voltage of one of the clustered neurons (red) and the external signal (green). B. Stability of the low and the high states. The network
is simulated by a transient pulse lasting 100 ms (green curve). The mean firing rate of the network (red curve) is around zero before the stimulation,
then increases and remains elevated (,20 Hz) even when the stimulation is terminated. Note that A and B use different scales of the time axes. C.
The minimal network size N sufficient for the bistability emergence depending on the connectivity inside the cluster c2. The curves of different colors
correspond to various values of b = 0.1 (red), b = 0.22 (green), b = 0.3 (blue).
doi:10.1371/journal.pone.0094292.g004
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the rest of the network fires sparsely. The mean firing rate of the

entire network increases slightly though it remains low.

We performed a series of simulations varying the size of each

subnetwork Ns. We found that the stability of the high state of a

local subnetwork strongly depends on its size. For relatively small

values of Ns, the high state is only metastable: the subnetwork

activated by external input fires at higher rates for about 100 ms,

but it gradually returns to the low state (Fig. 5A). For larger Ns, the

high state is stable: the activated subnetwork settles in the high

state and continues to fire at a high rate until another subnetwork

is activated by external input. Because of recurrent inhibition in

the large-scale network, competition emerges between different

subnetworks. For this reason, only one subnetwork may be in the

high state for any given moment, and if any subnetwork previously

was in the high state it switches back to the low state when the

other one is set in the high state (Fig. 5B). Further growth of Ns

reduces the competition and allows several subnetworks to be in

the high state simultaneously (Fig. 5C).

Discussion

The Connectivity Model
We have presented a model of synaptic connectivity in local

cortical circuits based on the non-random statistical properties

measured previously from small volumes of rat visual cortex. Our

model assumes the existence of dedicated subsets of clustered

neurons with different connectivity and different distributions of

synaptic weights inside and outside the clusters. Our model

incorporates several major features of the connectivity of cortical

synapses observed experimentally: (i) The probability of finding

highly-connected small groups of neurons is higher than expected

in random networks; (ii) Synaptic connections are on average

stronger between members of those highly-connected groups; (iii)

The overall distribution of EPSPs obeys a log-normal distribution

with a long tail. The fact that all of these statistical properties are

replicated by our model demonstrates its biological plausibility.

The present model of the network with clusters is based on

in vitro data recorded from slice preparations, in which a portion of

connections could be severed. Long-range connections are more

likely to be lost, but some local ones may too be severed. We have

simulated the effects of this cut in our model and found that it does

not significantly change the present results if the percentage of the

cut is in the order of 10%. This is because the subgroup of very

densely connected neurons remains densely connected even after

the cut of some connections.

Other models of clustered connections between cortical neurons

have been reported previously. A clustered network of fifty layer 5

pyramidal neurons was statistically reconstructed based on

experimental data [10]. An algorithm was introduced to construct

a network model from a random network using the distance-

dependent connection probabilities measured in experiment [15].

The most distinctive feature of the present model is that, unlikely

with the previous ones, we explicitly consider the interplay

between the distributions of synaptic weights and the clustering of

synaptic connections. To this end, the EPSP distributions in our

model are different inside and outside of the cluster. This

heterogeneity explains the threshold-dependent statistics of high-

ly-connected motifs (Fig. 2) and the saturating growth of the mean

EPSP amplitude versus the number of connections within certain

motifs (Fig. 3). It is also noteworthy that though our model

primarily concerns layer 5 of the rat visual cortex, the model was

shown to be consistent with recent experimental observations

Figure 5. Implications of the local clustering on the large-scale dynamics. A–C, The spike rastergrams of all 10000 excitatory neurons (top),
the averaged firing rate of the local subnetworks (middle) and the averaged firing rate of the entire network (bottom) are shown for different values
of the size of each subnetwork: Ns = 120 (A), 138 (B) and 178 (C). In the middle panels the firing rates of different subnetworks are shown by different
colors. Arrows in top and middle panels indicate the clusters of neurons activated by brief external stimuli and the stimulus timing, respectively. In (B)
and (C), some neurons outside the active clusters also exhibit slightly higher firing rates if they are projected to by sparse strong synapses from these
clusters.
doi:10.1371/journal.pone.0094292.g005
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coming from other cortical areas [15,31]. These results suggest

that the features of nonrandom connectivity and clustering that we

have explored may be applicable more widely across different

brain areas.

Our model makes several predictions about the wiring

architecture of local cortical circuits, which can be in principle

experimentally tested. The first prediction is that small volumes of

neocortex contain relatively large clusters of excitatory neurons

that are very densely connected with one another. Neurons in a

cluster comprise up to about one fifth of the total cortical

population. Thus, local subnetworks consisting of about one

hundred neurons contain clusters of about twenty densely

interconnected neurons. Secondly, the amplitude distributions of

EPSPs are predicted to have different profiles in neurons

belonging to a cluster and in those not belonging to it (Fig. 1D).

Though the experimental confirmation of a full connectivity

diagram of cortical neurons seems to be difficult at present,

computer-automated reconstruction techniques in combination

with modern image processing technologies, such as connectomics

[46–49], may identify such a circuit diagram in the near future.

It is also intriguing to study a relationship between the clustering

predicted by our model and the function-specific anatomical

connections in local cortical circuits. A number of recent studies

report that the connection probability between cortical neurons

depends on their functional properties. For example, the layer 2/3

of the primary somatosensory cortex displays a subset of highly-

active pyramidal neurons that are likely to be connected to each

other more often than others [14]. The connectivity between layer

2/3 neurons in visual cortex depends significantly on the similarity

of visually evoked neuronal responses [64] and the pattern of inter-

layer projections within local cortical circuits [11]. To clarify how

neural clusters are represented in the function-specific connectivity

is an important open problem.

Implications for the Network Dynamics
We have shown that an immediate consequence of the proposed

synaptic clustering is the generation of a bistable regime in the

network dynamics with distinct ‘‘high’’ and ‘‘low’’ states. To

explain why clustering leads to the emergence of the stable high

state let us consider RN and NC consisting of N = 80 excitatory

neurons studied above. Both NC and RN models have the same

mean connection probability equal approximately to 12% and

mean EPSP amplitude equal approximately to 0.8 mV. In a

network of 80 neurons, this means that on average 10 neurons

project to each neuron with the total EPSP amplitude of

approximately 8 mV. The excitation threshold is about 20 mV,

so this EPSP size is not enough to excite a postsynaptic neuron in a

RN even if all presynaptic neurons are excited. Thus, neurons are

activated mostly by external input to RN, which corresponds to

the low state.

In contrast, in the case of NC there exists a subset of 18 neurons

forming a densely connected cluster. In this cluster all neurons are

interconnected with relatively large mean EPSP amplitudes of

approximately 1.1 mV. Therefore, each of them receives the total

EPSP amplitude of approximately 19 mV from other clustered

neurons, which is almost enough to elicit action potentials from

postsynaptic neurons belonging to the cluster. The lack of input

can be covered by input from the rest of the network and from

external signal, such that once the cluster is activated, the clustered

neurons continue to fire persistently and the network remains in a

high activity state.

One may achieve bistability in the recurrent network without

clusters just by strengthening the connections or increasing the

network size [52,55]. Our parametric study shows that networks

without clustering demonstrate bistability only when they become

very large (N,1000), while with clustering they become bistable

for much lower values of N,100. This also holds true for different

cluster sizes (b = 0.1 and b = 0.3 are tested). Therefore, if the

predictions of our model about the cluster size and connectivity

were inaccurate, the main conclusions would remain correct:

relatively large and dense clusters lead to the emergence of

bistability in small-scale cortical circuits.

Bistable behavior is considered to play an important role for

various neural computation tasks [52], such as temporal integra-

tion in decision making and interval timing [53,54] and working

memory [55–58]. Here, we have demonstrated this phenomenon

in a network with a biologically relevant connectivity structure,

and provided a computational estimate for the minimal size of

cortical circuits that would be bistable. It is noteworthy that this

size roughly corresponds to the number of cells in a ‘‘minicolumn’’

[2,36], which may be a minimal functional module of neocortex.

We also note that our model demonstrates persistent firing states in

sensory cortex, the area in which a number of recent experiments

have suggested the presence of working memory, including V4,

MT, inferotemporal cortex (IT), primary and secondary somato-

sensory cortices [59,60]. Persistent firing states were also

previously demonstrated in auditory cortex [61,62] and a cultured

neural network of the hippocampus [63], for which a long-tailed

EPSP distribution was recently discovered [16].

While the bistable behavior of a small network clearly shows a

possible role of clustered connections, the role of sparse non-

clustered connections remains unclear in the small network. We

have revealed a possible role of non-clustered connections in the

dynamics of large-scale networks. In such a network, sparse non-

clustered connections generate a low-frequency spontaneous

activity, which was previously shown to be optimal for spike-

based communication [18]. On the background of this low-rate

activity, clustered connections create local spots displaying high-

rate activity. If the clusters innately exist in neocortex, our results

may support the Lego theory of memory [50], although whether

they can self-organize by synaptic plasticity through sensory

experiences remains to be an interesting question.

The stability of this elevated activity and the number of clusters

that can be co-activated simultaneously were shown to depend on

the size of the clusters. There may be other ways to achieve the

simultaneous activation of multiple clusters in a large-scale

network. For instance, in a rate-based competitive network model

the number of winner neural units surviving in the competition is

determined by the balance between self-inhibition on each unit

and lateral inhibition between units [51]. In short, increasing self-

inhibition weakens relative effects of lateral inhibition and hence

enables more units to survive. Therefore, if some inhibitory

neurons only inhibit those excitatory neurons belonging to the

same cluster (this introduces effective self-inhibition in the

subnetwork), more clusters may be co-activated in the entire

network. However, changing the size of each cluster yields a

simple, yet useful method to control the number of simultaneously

available memory modules in local cortical circuits without the

kind of fine-tuning such as achieving a specific connectivity

pattern.

The influence of clustering of connections on large-scale

network dynamics was previously studied by Litwin-Kumar and

Doiron [30]. They showed that clustering of connections induces

slow dynamics in the network, producing transient increases or

decreases of the firing rate in clusters of neurons. Thus, these high

and low activity states appear to be metastable in their model,

while in our network they are stable and switched on or off by

external stimuli. A crucial difference between the two models is
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that neurons in their network are in a suprathreshold regime and

fire autonomously even without any input. In contrast to this,

neurons in our model are in a subthreshold regime, and the low-

rate spontaneous firing emerges from the collective network

dynamics generated by sparse non-clustered connections.

In the conclusion we should note that though we proposed a

simple rule to embed subnetworks with clusters in a large-scale

network, a biologically plausible model of connections in large

cortical volumes remains to be constructed based on experimental

data. In particular, in such attempts, it is necessary to take into

account the observed distance-dependent effects on connectivity

[6] and clustering [15]. Construction of realistic models of large-

scale networks and understanding the potential role of connectivity

statistics in neural computations are important open questions that

deserve further study.

Materials and Methods

The Overrepresentation of Reciprocal Connections
In the NC of N neurons with K clusters each consisting of M

neurons and (N-KM) neurons belonging to none of the clusters, the

mean connectivity, i.e., the probability that two randomly chosen

units are connected, is given as

c~c1za c2{c1ð Þ, ð1Þ

where a = KM 2/N 2. The presence of clusters results in strong

differences in the statistical properties of synaptic connections

between the NC and the random network (RN) with the same

probability of connection c. Particularly, it results in the growth of

the number of highly connected motifs in the network. Thus, the

probability of two units to be reciprocally connected in RN equals

PR
0 = c2, whereas in the NC this probability is equal to PR = c1

2+a
(c2

2–c1
2). This difference in the probabilities leads to the following

coefficient characterizing the overrepresentation of reciprocal

connections in the NC with regard to the RN:

R~
PR

P0
R

~1z
a

1{a

c2

c
{1

� �2

: ð2Þ

The Overrepresentation of Triangle Motifs
The probability of finding a ‘‘triangle’’ consisting of three

neurons all interconnected to each other (reciprocally or unidi-

rectionally) in the NC is made up of the probabilities of the

following three cases, with pi being the probability of finding a

neuron triplet of the described type and Pi
T being the probability

that they make a triangle.

Case 1. None of three neurons belong to the same cluster:

p
1
~1{3

KM2

N2
z2

KM3

N3
, P1

T~c3
1(2{c1)3:

Case 2. Two neurons belong to the same cluster:

p
2
~3

KM2(N{M)

N3
, P2

T~c2(2{c2)c2
1(2{c1)2:

Case 3. All three neurons belong to the same cluster:

p
3
~

KM3

N3
, P3

T~c3
2(2{c2)3:

All these probabilities were calculated approximately for N, M

..1. To calculate the total probability of finding a triangle one

must take into account all three types of triplets as

PT~p1P1
Tzp2P2

Tzp3P3
T~

~c3
1(2{c1)3(1{3az2ab)

z3ac2c2
1(1{b)(2{c2)(2{c1)2zabc3

2(2{c2)3,

ð3Þ

where the coefficients a = KM2/N2 and b = M/N.

This probability calculated for NC is larger than the probability

PT
0 = c3 (2–c)3 of finding a triangle in RN. It is important that the

overrepresentation of high-order motifs is not just the reflection of

the overrepresentation of popular lower-order patterns. Given the

overrepresentation coefficient R of reciprocal connections, we can

calculate the probability of finding a triangle as PT
1 = c3 (2–Rc)3

from Equation 2, which is still lower than PT. We define the ratio

T = PT/PT
1 as the coefficient of the overrepresentation of triangle

motifs.

Sets of Parameter Values Consistent with the
Connectivity of Cortical Circuits

Here we explain the method to obtain the experimentally

observed statistical quantities, i.e., c = 0.1157, R = 4.025 and

T = 2.73 [10], by adjusting the values of parameters in the NC.

The tunable parameters in the model are the connection

probabilities c1 and c2, the number of clusters K and the coefficient

a. The last two parameters define the relative size of each cluster

b = M/N =
ffiffiffiffiffiffiffiffiffi
a=K

p
. First, we examine the range of acceptable

values of a. Given c and R, we can express c1 and c2 by using (1)

and (2) as follows:

c1,2~c 1+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{a

a

� �+1

R{1ð Þ

s0
@

1
A

where plus or minus sign is adopted for c1 and c2, respectively.

The obvious conditions 0#c1,2#1 give the range of possible values

of a as

amin~
1=c{1ð Þ2

R{1
z1

" #{1

, amax~1=R:

The experimentally observed values of c and R give a M [0.05,

0.25].

In the next step we derive a possible value range for b. For this

purpose we investigate the coefficient T of the overrepresentation

of triangles versus a for different fixed values of b (Fig. S1). The

plot of T(a) shifts upwards as the value of b increases, and the

target value T = 2.73 is obtainable in the narrow interval of b M
[0.156; 0.222]. Then, given the intervals of a and b, taking into

account that K = a/b 2 must be an integer and Kb,1 must hold,

we found six possible sets of parameter values that meet all the

criteria set by experiment. These sets are depicted in Fig. 1 B (solid
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circles) and Fig. S2 and correspond to different numbers of

clusters, K = 1, 2, …, 6. The cluster size was different for each of

the sets and varied within the range b M [0.16; 0.22].

Simulations of Possible Connection Cuts in Slice
Preparation

It is expected that slice recordings sever some fraction of

connections between neurons, which obviously influences our

estimates of the circuit connectivity. In order to take into account

the effect of the possible connection cut, we investigated how the

estimated values of model parameters may change if we suppose

that a certain fraction e (,1) of connections is randomly cut before

the measurements. In this case, the actual count of connections

before the cut should be (12e)21 times greater than it was

measured, and the actual number of motifs with X connections

should be (12e)2X times greater. Using these expressions and the

previously derived equations, we can calculate the actual values of

c, R and T from the observed values for any value of e. These

values correspond to the ‘‘reconstructed’’ circuit before the

connection loss. For example, when e = 10% we obtain

c = 0.129, R = 4.05 and T = 3.36, and these values were used to

obtain the five possible sets of values for c1, c2, a and b, each

corresponding to K = 1, 2, …, 5 with different values of b M [0.2,

0.26]. The five parameter sets are shown in Fig. 1D (empty circles).

The Weight Distributions
We suppose that the distribution of nonzero synaptic weights

inside and outside neuron clusters is given by two different

cumulative distribution functions F1,2(w) = Pr(Wij,w), where index

1 or 2 refers to the outside and inside, respectively. Then the

cumulative distribution of synaptic weights in the overall network

equals

F (w)~ Pr Wijvw
� �

~F1(w)z
ac2

c
F2(w){F1(w)ð Þ:

From this formula, we can calculate the overrepresentation r of

reciprocal connections for synaptic connections greater than the

threshold w as

r(w)~
k2

1(w)(1{a)zk2
2(w)a

k2
, ð4Þ

where k1, k2 and k are the probabilities to find a connection (. w)

outside the clusters, inside the clusters and in the overall network,

respectively. These probabilities can be found from the weights

distributions as k1,2(w) = c1,2(12F1,2(w)) and k = k1(12a)+k2a.

Since F1,2(0) = 0, taking zero threshold w = 0 gives r(0) = R.

If the functions F(w) and r(w) are determined from experimental

data, we can explicitly derive the expressions of the cumulative

weight distributions as

F1(w)~1{
c

c1
(1{F (w))

1{aG(w)

1{a
,

F2(w)~1{
c

c2
(1{F (w))G(w),

ð5Þ

where

F (w)~
1

2
1zerf

ln w{mffiffiffi
2
p

s

� �� �

is the cumulative distribution function for the lognormal distribu-

tion f (w)~ exp ( ln w{m)2=2s2
	 


=
ffiffiffiffiffiffi
2p
p

ws. In the above expres-

sion, erf(x) is the error function and the function

G(w)~1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{a

a
(r(w){1)

r

depends only on the overrepresentation function r(w). Thus,

choosing the cumulative functions F1,2(w) according to Equation 5,

we can obtain a desired function r(w) in the network. We note that

the maximal value of r depends on a and is given as rmax = 1/a.

This property is important for fitting experimental data with our

model.

Simulation of Local Circuit Dynamics
To simulate a local cortical circuit we used a network model

based on the model from [55]. This model describes neural

networks quite realistically and includes AMPA, NMDA and

GABA synapses, spike-frequency adaptation and short-term

depression. The network model consists of two populations on

NE excitatory and NI = 0.25NE inhibitory neurons. Each excitatory

neuron is described by the following equation:

Cm
dVm

dt
~{IL{IAHP{IsynzIapp, ð6Þ

d½Ca2z�
dt

~aCa

X
j

d(t{tj){
½Ca2z�

tCa

, ð7Þ

Here, Cm = 0.5 nF is the membrane capacitance, Vm is the

membrane voltage, IL = gL(Vm–VL) is the leak current,

gL = 0.025 mS, VL = –70 mV, IAHP = gAHP[Ca2+](Vm –VK) is a

calcium-activated potassium current for spike-frequency adapta-

tion, Isyn = IAMPA+INMDA+IGABA is the recurrent synaptic input from

the rest of the network. If Vm reaches the threshold Vthr it is reset to

VL and is held there for the refractory period tr = 2 ms. The

inhibitory neurons are described by (6) with IAHP = 0 (no spike-

frequency adaptation) and gL = 0.05 mS.

The synaptic currents are given by the equations IAMPA =

gAMPAsAMPA(Vm–VE), INMDA = gNMDAsNMDA(Vm –VE)/(1+[Mg2+]exp

(20.062Vm)/3.57), IGABA = gGABAsGABA(Vm–VI), where VE = 0 mV,

VI = –70 mV, gAMPA = 2.3 mS, gNMDA = 0.16 mS, gGABA = 0.1 mS,

[Mg2+] = 1 mM. The gating variables s for each type of receptors

are described by the second-order kinetics.

dx

dt
~ax

X
j

d(t{tj){
x

tx

, ð8Þ

ds

dt
~asx(1{s){

s

ts

, ð9Þ

where the sum runs over presynaptic spike times. For the AMPA

channels tx = 0.05 ms and t2 = 2 ms, for the NMDA channels

tx = 2 ms and ts = 80 ms, and for the GABA receptors tx = 0.1 ms

and ts = 10 ms. as = 1 for all types of the receptors, and the values

of ax were varied to control the size of EPSPs/IPSPs.

The connectivity and EPSPs between the excitatory neurons

were chosen according to the connectivity model developed

earlier. The relation between the parameters ax for the AMPA and
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NMDA synapses were chosen so that the impacts of the AMPA

and NMDA currents in the EPSPs were approximately equal

(varying the ratio between these currents led to the change of the

phase response curves of the neurons and the degree of their

synchronization [45]). The excitatory-to-inhibitory, inhibitory-to-

excitatory and inhibitory-to-inhibitory connections were set all-to-

all with ax randomly distributed in the interval [0;0.1]. The

synaptic delays were randomly distributed from 1 to 3 ms for all

types of the connections. The external input Iapp was a Poisson

train on AMPA-like pulses with ax = 0.1 and intensity l = 100 Hz.

Simulation of Large-scale Networks Dynamics
When we studied the dynamics of the large-scale network with

clusters, we used a simpler model based on the one from [18]. The

network consists of 10000 excitatory and 2000 inhibitory neurons,

with sparse random coupling and probabilities of 10% for

excitatory and 50% for inhibitory connections. The neurons were

described by the leaky integrate-and-fire model with conductance-

based synaptic currents:

dv

dt
~{

v{VL

tm

{gE(v{VE){gI (v{VI ), ð10Þ

where v is the membrane potential, tm is the membrane decay time

constant, VL, VE, and VI are the reversal potentials of leak current,

excitatory and inhibitory postsynaptic currents, respectively.

Excitatory and inhibitory synaptic conductance, gE and gI, is

described by the following equation:

dg

dt
~{

g

ts

z
X

j

Gj

X
sj

d(t{sj{dj), ð11Þ

where ts is the decay constant of synaptic current. The second

term represents synaptic inputs from presynaptic neurons, Gj and

dj are the weight and delay of synaptic input from the j-th

presynaptic neuron, and sj is the spike timing of the neuron.

Values of the parameters were set as VL = –70 mV, VE = 0 mV,

VI = –80 mV, tm = 20 ms for excitatory neurons and 10 ms for

inhibitory neurons and ts = 2 ms. Spike threshold is Vthr =

–50 mV and the refractory period is 1 ms.

Initially the values of Gij for excitatory-to-excitatory synapses are

selected such that the corresponding EPSPs are distributed

according to the lognormal distribution. Then, to introduce

clustering all the excitatory neurons were partitioned into groups

of NS units each, and the connections inside each group were

rewired according to the present NC model. The values of Gij for

the other types of connections were selected as of Gij = 0.018, 0.002

and 0.0025 for excitatory-to-inhibitory, inhibitory-to-excitatory

and inhibitory-to-inhibitory synapses. Synaptic delays were chosen

randomly from the uniform distribution [d021, d0+1] with mean

d0 set as 2 ms for excitatory-to-excitatory connections and 1 ms for

the other types of connections. Synaptic transmission fails between

excitatory neurons according to the following EPSP-dependent

rate p = a/(a+EPSP), where a = 0.1 mV.

Supporting Information

Figure S1 The plot of T versus a for different values of
b. Blue horizontal line shows the target experimental value

T = 2.73, red lines correspond to boundary values of b for which

the target value is obtainable.

(TIF)

Figure S2 Possible parameter sets in the model. The

values of parameters a, b, c1 and c2 are plotted for six parameter

sets corresponding to K = 1, 2, … 6. All these parameter sets give

the experimentally measured values of the overall connectivity

c = 0.1157, the overrepresentation of reciprocal connections

R = 4.025 and that of triangle motifs T = 2.73.

(TIF)

Figure S3 Bistable dynamics of the network. (A) Mean

field of the network (blue) and the external input (green). (B) Power

spectrum in the low state. (C) Power spectrum in the high state.

(TIF)
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1. Braitenberg V, Schüz A (1991) Anatomy of the cortex – Statistics and geometry.

Berlin: Springer-Verlag.

2. Markram H (1997) A network of tufted layer 5 pyramidal neurons. Cereb

Cortex 7: 523–533.

3. Markram H, Lübke J, Frotscher M, Roth A, Sakmann B (1997) Physiology and

anatomy of synaptic connections between thick tufted pyramidal neurones in the

developing rat neocortex. J Physiol 500 (Part 2): 409–440.
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